메뉴 건너뛰기




Volumn 44, Issue , 2013, Pages 121-131

Combining active learning and semi-supervised learning to construct SVM classifier

Author keywords

Active learning; Discriminating speech from non speech; Label changing rate; Semi supervised learning; Support vector machines

Indexed keywords

ACTIVE LEARNING; ACTIVE-LEARNING ALGORITHM; BOUNDARY SAMPLES; CLASS DISTRIBUTIONS; CLASSIFICATION ALGORITHM; NON SPEECH; SEMI-SUPERVISED LEARNING; UNLABELED SAMPLES;

EID: 84875758815     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.01.032     Document Type: Article
Times cited : (104)

References (27)
  • 2
    • 33745456231 scopus 로고    scopus 로고
    • University of Wisconsin-Madison, Computer Science Technical Report 1530
    • Xiaojin Zhu, Semi-Supervised Learning Literature Survey, in: University of Wisconsin-Madison, Computer Science Technical Report 1530, 2008.
    • (2008) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 3
    • 77955431070 scopus 로고    scopus 로고
    • Semi-supervised learning based on nearest neighbor rule and cut edges
    • Yu Wang, Xiaoyan Xu, and Haifeng Zhao Semi-supervised learning based on nearest neighbor rule and cut edges Knowledge-Based Systems 23 6 2010 547 554
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 547-554
    • Wang, Y.1    Xu, X.2    Zhao, H.3
  • 4
    • 77955348911 scopus 로고    scopus 로고
    • A classification algorithm based on local cluster centers with a few labeled training examples
    • Tianqiang Huang, Yangqiang Yu, and Gongde Guo A classification algorithm based on local cluster centers with a few labeled training examples Knowledge-Based Systems 23 6 2010 563 571
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 563-571
    • Huang, T.1    Yu, Y.2    Guo, G.3
  • 6
    • 3242788638 scopus 로고    scopus 로고
    • Craig A. Knoblock, Active+Semi-supervised Learning = Robust Multi-View Learning
    • Machine Learning
    • Ion Muslea, Steven Minton, Craig A. Knoblock, Active+Semi-supervised Learning = Robust Multi-View Learning, in: Proceedings of International Conference on, Machine Learning, 2002, pp. 435-442.
    • (2002) Proceedings of International Conference on , pp. 435-442
    • Muslea, I.1    Minton, S.2
  • 8
    • 77950063604 scopus 로고    scopus 로고
    • Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
    • Yu Dong, Balakrishnan Varadarajan, and Li Deng Active learning and semi-supervised learning for speech recognition: a unified framework using the global entropy reduction maximization criterion Computer Speech & Language 24 3 2010 433 444
    • (2010) Computer Speech & Language , vol.24 , Issue.3 , pp. 433-444
    • Dong, Y.1    Varadarajan, B.2    Deng, L.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes, and Vladimir Vapnik Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 79955522957 scopus 로고    scopus 로고
    • Support vector machine active learning through significance space construction
    • Edoardo Pasolli, Farid Melgani, and Yakoub Bazi Support vector machine active learning through significance space construction IEEE Geoscience and Remote Sensing Letters 8 3 2011 431 435
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 12
    • 0003007938 scopus 로고    scopus 로고
    • Support Vector Machine Active Learning with Applications to Text Classification
    • Machine Learning
    • Simon Tong, Daphne Koller, Support Vector Machine Active Learning with Applications to Text Classification, in: Proceedings of the Seventeenth International Conference on, Machine Learning, 1998, pp. 287-295.
    • (1998) Proceedings of the Seventeenth International Conference on , pp. 287-295
    • Tong, S.1    Koller, D.2
  • 15
    • 42749095524 scopus 로고    scopus 로고
    • SVM-based active feedback in image retrieval using clustering and unlabeled data
    • Rujie Liu, Yuehong Wang, and Takayuki Baba SVM-based active feedback in image retrieval using clustering and unlabeled data Pattern Recognition 41 8 2008 2645 2655
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2645-2655
    • Liu, R.1    Wang, Y.2    Baba, T.3
  • 16
    • 78649709873 scopus 로고    scopus 로고
    • Bayesian semi-supervised learning with support vector machine
    • Sounak Chakraborty Bayesian semi-supervised learning with support vector machine Statistical Methodology 8 1 2011 68 82
    • (2011) Statistical Methodology , vol.8 , Issue.1 , pp. 68-82
    • Chakraborty, S.1
  • 17
    • 79957480232 scopus 로고    scopus 로고
    • Help-training for semi-supervised support vector machines
    • M. Adankon, and Mohamed Cheriet Help-training for semi-supervised support vector machines Pattern Recognition 44 9 2011 2220 2230
    • (2011) Pattern Recognition , vol.44 , Issue.9 , pp. 2220-2230
    • Adankon, M.1    Cheriet, M.2
  • 18
    • 84870064676 scopus 로고    scopus 로고
    • A hybrid generative/discriminative method for semi-supervised classification
    • Zhen. Jiang, Shiyong. Zhang, and Jianping. Zeng A hybrid generative/discriminative method for semi-supervised classification Knowledge-Based Systems 37 2013 137 145
    • (2013) Knowledge-Based Systems , vol.37 , pp. 137-145
    • Jiang, Z.1    Zhang, S.2    Zeng, J.3
  • 20
    • 84864998804 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning techniques to extract protein interaction sentences
    • Min Song, Yu Hwanjo, and Wook-Shin Han Combining active learning and semi-supervised learning techniques to extract protein interaction sentences BMC Bioinformatics 12 Suppl. 12 2011 S4
    • (2011) BMC Bioinformatics , vol.12 , Issue.SUPPL. 12 , pp. 4
    • Song, M.1    Hwanjo, Y.2    Han, W.-S.3
  • 21
    • 79957613676 scopus 로고    scopus 로고
    • An elementary proof of the Karush-Kuhn-Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints
    • Olga Brezhneva, and Alexey A. Tretyakov An elementary proof of the Karush-Kuhn-Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints Optimization 60 5 2011 613 618
    • (2011) Optimization , vol.60 , Issue.5 , pp. 613-618
    • Brezhneva, O.1    Tretyakov, A.A.2
  • 24
    • 84155181072 scopus 로고    scopus 로고
    • ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging
    • Jinchang Ren ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging Knowledge-Based Systems 26 2012 144 153
    • (2012) Knowledge-Based Systems , vol.26 , pp. 144-153
    • Ren, J.1
  • 25
    • 43249086679 scopus 로고    scopus 로고
    • A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
    • Yuanqing Li, Cuntai Guan, and Huiqi Li A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system Pattern Recognition Letters 29 9 2008 1285 1294
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1285-1294
    • Li, Y.1    Guan, C.2    Li, H.3
  • 26
    • 78649321657 scopus 로고    scopus 로고
    • A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery
    • Ujjwal Maulik, and Debasis Chakraborty A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery Pattern Recognition 44 3 2011 615 623
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 615-623
    • Maulik, U.1    Chakraborty, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.