메뉴 건너뛰기




Volumn 23, Issue 4, 2014, Pages 1722-1736

Augmented multiple instance regression for inferring object contours in bounding boxes

Author keywords

multiple instance regression (MIR); segment selection; Semantic segmentation; weakly supervised learning

Indexed keywords

REGRESSION ANALYSIS;

EID: 84896443073     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2014.2307436     Document Type: Article
Times cited : (26)

References (54)
  • 2
    • 84863149715 scopus 로고    scopus 로고
    • Outdoor scene image segmentation based on background recognition and perceptual organization
    • Mar.
    • C. Cheng, A. Koschan, C.-H. Chen, D. L. Page, and M. A. Abidi, "Outdoor scene image segmentation based on background recognition and perceptual organization," IEEE Trans. Image Process., vol. 21, no. 3, pp. 1007-1019, Mar. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.3 , pp. 1007-1019
    • Cheng, C.1    Koschan, A.2    Chen, C.-H.3    Page, D.L.4    Abidi, M.A.5
  • 3
    • 84861335519 scopus 로고    scopus 로고
    • Object recognition by sequential figure-ground ranking
    • J. Carreira, F. Li, and C. Sminchisescu, "Object recognition by sequential figure-ground ranking," Int. J. Comput. Vis., vol. 98, no. 3, pp. 243-262, 2012.
    • (2012) Int. J. Comput. Vis. , vol.98 , Issue.3 , pp. 243-262
    • Carreira, J.1    Li, F.2    Sminchisescu, C.3
  • 4
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, A. Criminisi, and T. Darrell, "TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context," Int. J. Comput. Vis., vol. 81, no. 1, pp. 2-23, 2009.
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Criminisi, A.3    Darrell, T.4
  • 5
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladický, and P. H. S. Torr, "Robust higher order potentials for enforcing label consistency," Int. J. Comput. Vis., vol. 82, no. 3, pp. 302-324, 2009.
    • (2009) Int. J. Comput. Vis. , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Ladický, L.2    Torr, P.H.S.3
  • 6
    • 84875459808 scopus 로고    scopus 로고
    • Hough forest random field for object recognition and segmentation
    • May
    • N. Payet and S. Todorovic, "Hough forest random field for object recognition and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 5, pp. 1066-1079, May 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.5 , pp. 1066-1079
    • Payet, N.1    Todorovic, S.2
  • 7
    • 84875836624 scopus 로고    scopus 로고
    • Learning dynamic hybrid Markov random field for image labeling
    • Jun.
    • Q. Zhou, J. Zhu, and W. Liu, "Learning dynamic hybrid Markov random field for image labeling," IEEE Trans. Image Process., vol. 22, no. 6, pp. 2219-2232, Jun. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.6 , pp. 2219-2232
    • Zhou, Q.1    Zhu, J.2    Liu, W.3
  • 10
    • 85078986900 scopus 로고    scopus 로고
    • Class segmentation and object localization with superpixel neighborhoods
    • Oct.
    • B. Fulkerson, A. Vedaldi, and S. Soatto, "Class segmentation and object localization with superpixel neighborhoods," in Proc. IEEE 12th Int. Conf. Comput. Vis., Oct. 2009, pp. 670-677.
    • (2009) Proc. IEEE 12th Int. Conf. Comput. Vis. , pp. 670-677
    • Fulkerson, B.1    Vedaldi, A.2    Soatto, S.3
  • 13
    • 56749164584 scopus 로고    scopus 로고
    • Object recognition by integrating multiple image segmentations
    • C. Pantofaru, C. Schmid, and M. Hebert, "Object recognition by integrating multiple image segmentations," in Proc. Eur. Conf. Comput. Vis., 2008, pp. 481-494.
    • (2008) Proc. Eur. Conf. Comput. Vis. , pp. 481-494
    • Pantofaru, C.1    Schmid, C.2    Hebert, M.3
  • 16
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • Jun.
    • J. Yao, S. Fidler, and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 702-709.
    • (2012) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 702-709
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 17
    • 84873190838 scopus 로고    scopus 로고
    • Superparsing-Scalable nonparametric image parsing with superpixels
    • J. Tighe and S. Lazebnik, "Superparsing-Scalable nonparametric image parsing with superpixels," Int. J. Comput. Vis., vol. 101, no. 2, pp. 329-349, 2013.
    • (2013) Int. J. Comput. Vis. , vol.101 , Issue.2 , pp. 329-349
    • Tighe, J.1    Lazebnik, S.2
  • 18
    • 84857420364 scopus 로고    scopus 로고
    • Multi-instance methods for partially supervised image segmentation
    • A. Müller and S. Behnke, "Multi-instance methods for partially supervised image segmentation," in Proc. IAPRW Partially Supervised Learn., 2011, pp. 110-119.
    • (2011) Proc. IAPRW Partially Supervised Learn. , pp. 110-119
    • Müller, A.1    Behnke, S.2
  • 20
    • 77955781189 scopus 로고    scopus 로고
    • Image segmentation by MAP-ML estimations
    • Sep.
    • S. Chen, L. Cao, Y. Wang, J. Liu, and X. Tang, "Image segmentation by MAP-ML estimations," IEEE Trans. Image Process., vol. 19, no. 9, pp. 2254-2264, Sep. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2254-2264
    • Chen, S.1    Cao, L.2    Wang, Y.3    Liu, J.4    Tang, X.5
  • 21
    • 77952648634 scopus 로고    scopus 로고
    • A label field fusion Bayesian model and its penalized maximum rand estimator for image segmentation
    • Jun.
    • M. Mignotte, "A label field fusion Bayesian model and its penalized maximum rand estimator for image segmentation," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1610-1624, Jun. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6 , pp. 1610-1624
    • Mignotte, M.1
  • 22
    • 77954709470 scopus 로고    scopus 로고
    • Multivariate image segmentation using semantic region growing with adaptive edge penalty
    • Aug.
    • A. K. Qin and D. A. Clausi, "Multivariate image segmentation using semantic region growing with adaptive edge penalty," IEEE Trans. Image Process., vol. 19, no. 8, pp. 2157-2170, Aug. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.8 , pp. 2157-2170
    • Qin, A.K.1    Clausi, D.A.2
  • 23
    • 79551660160 scopus 로고    scopus 로고
    • Multiregion image segmentation by parametric kernel graph cuts
    • Feb.
    • M. B. Salah, A. Mitiche, and I. B. Ayed, "Multiregion image segmentation by parametric kernel graph cuts," IEEE Trans. Image Process., vol. 20, no. 2, pp. 545-557, Feb. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.2 , pp. 545-557
    • Salah, M.B.1    Mitiche, A.2    Ayed, I.B.3
  • 24
    • 79960525478 scopus 로고    scopus 로고
    • Natural image segmentation based on tree equipartition, Bayesian flooding and region merging
    • Aug.
    • C. Panagiotakis, I. Grinias, and G. Tziritas, "Natural image segmentation based on tree equipartition, Bayesian flooding and region merging," IEEE Trans. Image Process., vol. 20, no. 8, pp. 2276-2287, Aug. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.8 , pp. 2276-2287
    • Panagiotakis, C.1    Grinias, I.2    Tziritas, G.3
  • 26
    • 78049248989 scopus 로고    scopus 로고
    • TurboPixel segmentation using eigen-images
    • Nov.
    • S. Xiang, C. Pan, F. Nie, and C. Zhang, "TurboPixel segmentation using eigen-images," IEEE Trans. Image Process., vol. 19, no. 11, pp. 3024-3034, Nov. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 3024-3034
    • Xiang, S.1    Pan, C.2    Nie, F.3    Zhang, C.4
  • 27
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. 18th Int. Conf. Mach. Learn. , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 28
    • 33750032384 scopus 로고    scopus 로고
    • Random Fields for Relational Learning Cambridge, MA, USA: MIT Press
    • C. Sutton and A. McCallum, An Introduction to Conditional Random Fields for Relational Learning. Cambridge, MA, USA: MIT Press, 2006.
    • (2006) An Introduction to Conditional
    • Sutton, C.1    McCallum, A.2
  • 32
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • Jul.
    • J. Carreira and C. Sminchisescu, "CPMC: Automatic object segmentation using constrained parametric min-cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1312-1328, Jul. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 33
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, "Solving the multiple instance problem with axis-parallel rectangles," Artif. Intell., vol. 89, nos. 1-2, pp. 31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 34
    • 84896461410 scopus 로고    scopus 로고
    • Smooth maximum function based algorithms for classification, regression, and collaborative filtering
    • G. Takács, "Smooth maximum function based algorithms for classification, regression, and collaborative filtering," Acta Tech. Jaurinensis, Ser. Comput. Intell., vol. 3, no. 1, pp. 27-63, 2010.
    • (2010) Acta Tech. Jaurinensis, Ser. Comput. Intell. , vol.3 , Issue.1 , pp. 27-63
    • Takács, G.1
  • 36
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • Aug.
    • C. Rother, V. Kolmogorov, and A. Blake, "'GrabCut': Interactive foreground extraction using iterated graph cuts," ACM Trans. Graph., vol. 23, no. 3, pp. 309-314, Aug. 2004.
    • (2004) ACM Trans. Graph. , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 37
    • 34948847644 scopus 로고    scopus 로고
    • Recognizing objects by piecing together the segmentation puzzle
    • Jun.
    • T. Cour and J. Shi, "Recognizing objects by piecing together the segmentation puzzle," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2007, pp. 1-8.
    • (2007) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1-8
    • Cour, T.1    Shi, J.2
  • 40
    • 84875886756 scopus 로고    scopus 로고
    • Knowledge leverage from contours to bounding boxes: A concise approach to annotation
    • J.-Z. Cheng, F.-J. Chang, K.-J. Hsu, and Y.-Y. Lin, "Knowledge leverage from contours to bounding boxes: A concise approach to annotation," in Proc. Asian Conf. Comput. Vis., 2012, pp. 730-744.
    • (2012) Proc. Asian Conf. Comput. Vis. , pp. 730-744
    • Cheng, J.-Z.1    Chang, F.-J.2    Hsu, K.-J.3    Lin, Y.-Y.4
  • 46
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • P. A. Viola, J. C. Platt, and C. Zhang, "Multiple instance boosting for object detection," in Proc. Adv. NIPS, 2005, pp. 1417-1426.
    • (2005) Proc. Adv. NIPS , pp. 1417-1426
    • Viola, P.A.1    Platt, J.C.2    Zhang, C.3
  • 48
    • 85162536812 scopus 로고    scopus 로고
    • Convex multiple-instance learning by estimating likelihood ratio
    • F. Li and C. Sminchisescu, "Convex multiple-instance learning by estimating likelihood ratio," in Proc. Adv. NIPS, Dec. 2010, pp. 1360-1368.
    • (2010) Proc. Adv. NIPS, Dec. , pp. 1360-1368
    • Li, F.1    Sminchisescu, C.2
  • 50
    • 33749243963 scopus 로고    scopus 로고
    • A regularization framework for multipleinstance learning
    • P.-M. Cheung and J. T. Kwok, "A regularization framework for multipleinstance learning," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 193-200.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 193-200
    • Cheung, P.-M.1    Kwok, J.T.2
  • 51
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Nov.
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 52
    • 79953049203 scopus 로고    scopus 로고
    • SIFT Flow: Dense correspondence across scenes and its applications
    • May
    • C. Liu, J. Yuen, and A. Torralba, "SIFT Flow: Dense correspondence across scenes and its applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 978-994, May 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 978-994
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 53
    • 84949963705 scopus 로고    scopus 로고
    • Classifying images of materials: Achieving viewpoint and illumination independence
    • M. Varma and A. Zisserman, "Classifying images of materials: Achieving viewpoint and illumination independence," in Proc. 7th Eur. Conf. Comput. Vis., 2002, pp. 255-271.
    • (2002) Proc. 7th Eur. Conf. Comput. Vis. , pp. 255-271
    • Varma, M.1    Zisserman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.