메뉴 건너뛰기




Volumn 52, Issue 7, 2014, Pages 4046-4055

A feature-space indicator Kriging approach for remote sensing image classification

Author keywords

Image classification; image recognition; Statistics

Indexed keywords

DATA HANDLING; IMAGE CLASSIFICATION; IMAGE RECOGNITION; IMAGE RECONSTRUCTION; INTERPOLATION; PROBABILITY DISTRIBUTIONS; STATISTICS; SUPPORT VECTOR MACHINES;

EID: 84896402412     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2279118     Document Type: Article
Times cited : (12)

References (21)
  • 1
    • 84155181072 scopus 로고    scopus 로고
    • ANN vs. SVM: Which one performs better in classificationof MCCs in mammogram imaging
    • Feb.
    • J. Ren, "ANN vs. SVM: Which one performs better in classificationof MCCs in mammogram imaging," Knowledge-Based Syst., vol. 26,pp. 144-153, Feb. 2012.
    • (2012) Knowledge-Based Syst. , vol.26 , pp. 144-153
    • Ren, J.1
  • 2
    • 40349100592 scopus 로고    scopus 로고
    • RVM-based multi-class classification of remotely sensed data
    • DOI 10.1080/01431160701822115, PII 791027033
    • G. M. Foody, "RVM-based multi-class classification of remotely senseddata," Int. J. Remote Sens., vol. 29, no. 6, pp. 1817-1823, 2008. (Pubitemid 351338305)
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.6 , pp. 1817-1823
    • Foody, G.M.1
  • 3
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification:Implications for training and classification users
    • Apr.
    • A. Mathur and G. M. Foody, "Multiclass and binary SVM classification:Implications for training and classification users," IEEE Geosci. RemoteSens. Lett., vol. 5, no. 2, pp. 241-245, Apr. 2008.
    • (2008) IEEE Geosci. RemoteSens. Lett. , vol.5 , Issue.2 , pp. 241-245
    • Mathur, A.1    Foody, G.M.2
  • 5
    • 0029667623 scopus 로고    scopus 로고
    • Classification of remotely-sensed imagery using an indicatorkriging approach-Application to the problem of calcite-dolomitemineral mapping
    • Apr.
    • F. Van derMeer, "Classification of remotely-sensed imagery using an indicatorkriging approach-Application to the problem of calcite-dolomitemineral mapping," Int. J. Remote Sens., vol. 17, no. 6, pp. 1233-1249,Apr. 1996.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.6 , pp. 1233-1249
    • Van Dermeer, F.1
  • 6
    • 0029305196 scopus 로고
    • Defining an optimal size of supportfor remote sensing investigations
    • May
    • P. M. Atkinson and P. J. Curran, "Defining an optimal size of supportfor remote sensing investigations," IEEE Trans. Geoscience and RemoteSensing, vol. 33, no. 3, pp. 768-776, May 1995.
    • (1995) IEEE Trans. Geoscience and RemoteSensing , vol.33 , Issue.3 , pp. 768-776
    • Atkinson, P.M.1    Curran, P.J.2
  • 7
    • 0029735435 scopus 로고    scopus 로고
    • Interpolating satellite derived wind field data using ordinary kriging, with application to the Nadir Gap
    • PII S019628929600695X
    • M. R. Inggs and R. T. Lord, "Interpolating satellite derived wind field datausing ordinary kriging with application to the nadir gap," IEEE Trans.Geosci. Remote Sens., vol. 34, no. 1, pp. 250-256, Jan. 1996. (Pubitemid 126780875)
    • (1996) IEEE Transactions on Geoscience and Remote Sensing , vol.34 , Issue.1 , pp. 250-256
    • Inggs, M.R.1    Lord, R.T.2
  • 8
    • 0033934816 scopus 로고    scopus 로고
    • An anisotropic spatial modelingapproach for remote sensing image rectification
    • Jul.
    • K. S. Cheng, H. C. Yeh, and C. H. Tsai, "An anisotropic spatial modelingapproach for remote sensing image rectification," Remote Sens. Environ.,vol. 73, no. 1, pp. 46-54, Jul. 2000.
    • (2000) Remote Sens. Environ. , vol.73 , Issue.1 , pp. 46-54
    • Cheng, K.S.1    Yeh, H.C.2    Tsai, C.H.3
  • 9
    • 0032208030 scopus 로고    scopus 로고
    • The semivariogram in comparison to the co-occurrence matrix for classification of image texture
    • PII S0196289298049663
    • J. R. Carr and F. P. Miranda, "The semivariogram in comparison to theco-occurrence matrix for classification of image texture," IEEE Trans.Geosci. Remote Sens., vol. 36, no. 6, pp. 1945-1952, Nov. 1998. (Pubitemid 128748593)
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.6 , pp. 1945-1952
    • Carr, J.R.1    De Miranda, F.P.2
  • 10
    • 0030184109 scopus 로고    scopus 로고
    • Geostatistical description of textures on an aerial photographfor discriminating classes of land-cover
    • Jul.
    • R. M. Lark, "Geostatistical description of textures on an aerial photographfor discriminating classes of land-cover," Int. J. Remote Sens., vol. 17,no. 11, pp. 2115-2133, Jul. 1996.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.11 , pp. 2115-2133
    • Lark, R.M.1
  • 11
    • 17344387949 scopus 로고    scopus 로고
    • Computing geostatistical image texture for remotely sensed data classification
    • DOI 10.1016/S0098-3004(99)00118-1, PII S0098300499001181, Geostatistics and geospatial techniques in remote sensing
    • M. Chica-Olmo and F. Arbarca-Hrnandez, "Computing geostatisticalimage texture for remotely sensed data classification," Comput. Geosci.,vol. 26, no. 4, pp. 373-383, May 2000. (Pubitemid 30228964)
    • (2000) Computers and Geosciences , vol.26 , Issue.4 , pp. 373-383
    • Chica-Olmo, M.1    Abarca-Hernandez, F.2
  • 12
    • 0034092755 scopus 로고    scopus 로고
    • Geostatistical classification for remotesensing: An introduction
    • May 2000
    • P. M. Atkinson and P. Lewis, "Geostatistical classification for remotesensing: An introduction," Comput. Geosci., vol. 26, no. 4, pp. 361-373,May 2000.
    • Comput. Geosci. , vol.26 , Issue.4 , pp. 361-373
    • Atkinson, P.M.1    Lewis, P.2
  • 13
    • 0028552531 scopus 로고
    • Extraction of mineral absorption features from highspectralresolution data using non-parametric geostatistical techniques
    • F. Van der Meer, "Extraction of mineral absorption features from highspectralresolution data using non-parametric geostatistical techniques,"Int. J. Remote Sens., vol. 15, no. 11, pp. 2193-2214, 1994.
    • (1994) Int. J. Remote Sens. , vol.15 , Issue.11 , pp. 2193-2214
    • Meer Der F.Van1
  • 16
    • 84865742501 scopus 로고    scopus 로고
    • Simultaneous feature selectionand SVM parameter determination in classification of hyperspectralimagery using ant colony optimization
    • Apr.
    • F. Samadzadegan, H. Hasani, and T. Schenk, "Simultaneous feature selectionand SVM parameter determination in classification of hyperspectralimagery using ant colony optimization," Can. J. Remote Sens., vol. 38,no. 2, pp. 139-156, Apr. 2012.
    • (2012) Can. J. Remote Sens. , vol.38 , Issue.2 , pp. 139-156
    • Samadzadegan, F.1    Hasani, H.2    Schenk, T.3
  • 17
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectraldata by SVM
    • May 2010
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectraldata by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5,pp. 2297-2307, May 2010.
    • IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 18
    • 77957308673 scopus 로고    scopus 로고
    • Urban land use andland cover classification using the neural-fuzzy inference approach withformosat-2 data
    • Oct.
    • H.W. Chen, N. B. Chang, R. F. Yu, and Y.W. Huang, "Urban land use andland cover classification using the neural-fuzzy inference approach withFORMOSAT-2 data," J. Appl. Remote Sens., vol. 3, no. 1, pp. 033558-1-033558-18, Oct. 2009.
    • (2009) J. Appl. Remote Sens. , vol.3 , Issue.1 , pp. 0335581-03355818
    • Chen, H.W.1    Chang, N.B.2    Yu, R.F.3    Huang, Y.W.4
  • 20
    • 84896403883 scopus 로고    scopus 로고
    • [Online]. Available:
    • Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.