메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Experimental investigation for fault diagnosis based on a hybrid approach using wavelet packet and support vector classification

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; AUTOMATED PATTERN RECOGNITION; ENERGY; EXPERIMENTAL STUDY; HYBRID; MACHINE LEARNING; NONLINEAR SYSTEM; SUPPORT VECTOR MACHINE; VIBRATION; WAVELET PACKET DECOMPOSITION; DEVICE FAILURE; DEVICE FAILURE ANALYSIS; PROCEDURES; SOUND DETECTION; WAVELET ANALYSIS;

EID: 84896362387     PISSN: None     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2014/145807     Document Type: Article
Times cited : (16)

References (30)
  • 1
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • 2-s2.0-0942289503 10.1016/S0888-3270(03)00020-7
    • Samanta B., Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing 2004 18 3 625 644 2-s2.0-0942289503 10.1016/S0888-3270(03)00020-7
    • (2004) Mechanical Systems and Signal Processing , vol.18 , Issue.3 , pp. 625-644
    • Samanta, B.1
  • 2
    • 4344683640 scopus 로고    scopus 로고
    • Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines
    • 2-s2.0-4344683640 10.1016/j.ymssp.2004.06.002
    • Yang B.-S., Hwang W.-W., Kim D.-J., Tan A. C., Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mechanical Systems and Signal Processing 2005 19 2 371 390 2-s2.0-4344683640 10.1016/j.ymssp.2004.06.002
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.2 , pp. 371-390
    • Yang, B.-S.1    Hwang, W.-W.2    Kim, D.-J.3    Tan, A.C.4
  • 3
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • 2-s2.0-0037345899 10.1006/mssp.2001.1462
    • Samanta B., Al-Balushi K. R., Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing 2003 17 2 317 328 2-s2.0-0037345899 10.1006/mssp.2001.1462
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 6
    • 84880685408 scopus 로고    scopus 로고
    • Emerging Research in Artificial Intelligence and Computational Intelligence - International Conference 2012
    • Liu Z. L., Lu Q. Z., Wang Y. L., Wei C. Y., A direct selection method of feature frequency. 315 Emerging Research in Artificial Intelligence and Computational Intelligence-International Conference 2012 479 486
    • A Direct Selection Method of Feature Frequency , vol.315 , pp. 479-486
    • Liu, Z.L.1    Lu, Q.Z.2    Wang, Y.L.3    Wei, C.Y.4
  • 7
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
    • DOI 10.1016/j.ymssp.2006.12.004, PII S0888327006002846
    • Rai V. K., Mohanty A. R., Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mechanical Systems and Signal Processing 2007 21 6 2607 2615 2-s2.0-34249751601 10.1016/j.ymssp.2006.12.004 (Pubitemid 46829754)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2607-2615
    • Rai, V.K.1    Mohanty, A.R.2
  • 10
    • 79954415606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet transform
    • 2-s2.0-79954415606 10.1016/j.neucom.2011.01.021
    • Kankar P. K., Sharma S. C., Harsha S. P., Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 2011 74 10 1638 1645 2-s2.0-79954415606 10.1016/j.neucom.2011.01.021
    • (2011) Neurocomputing , vol.74 , Issue.10 , pp. 1638-1645
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 11
    • 4544275882 scopus 로고    scopus 로고
    • Machine fault diagnosis through an effective exact wavelet analysis
    • 2-s2.0-4544275882 10.1016/j.jsv.2003.09.031
    • Tse P. W., Yang W.-X., Tam H. Y., Machine fault diagnosis through an effective exact wavelet analysis. Journal of Sound and Vibration 2004 277 4-5 1005 1024 2-s2.0-4544275882 10.1016/j.jsv.2003.09.031
    • (2004) Journal of Sound and Vibration , vol.277 , Issue.4-5 , pp. 1005-1024
    • Tse, P.W.1    Yang, W.-X.2    Tam, H.Y.3
  • 12
    • 81455135167 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on amplitude and phase map of Hermitian wavelet transform
    • 2-s2.0-81455135167 10.1007/s12206-011-0717-0
    • Li H., Fu L., Zheng H., Bearing fault diagnosis based on amplitude and phase map of Hermitian wavelet transform. Journal of Mechanical Science and Technology 2011 25 11 2731 2740 2-s2.0-81455135167 10.1007/s12206-011-0717-0
    • (2011) Journal of Mechanical Science and Technology , vol.25 , Issue.11 , pp. 2731-2740
    • Li, H.1    Fu, L.2    Zheng, H.3
  • 13
    • 79954415606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet transform
    • 2-s2.0-79954415606 10.1016/j.neucom.2011.01.021
    • Kankar P. K., Sharma S. C., Harsha S. P., Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 2011 74 10 1638 1645 2-s2.0-79954415606 10.1016/j.neucom.2011.01.021
    • (2011) Neurocomputing , vol.74 , Issue.10 , pp. 1638-1645
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 14
    • 0036532606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet packets
    • DOI 10.1016/S0963-8695(01)00044-5, PII S0963869501000445
    • Nikolaou N. G., Antoniadis I. A., Rolling element bearing fault diagnosis using wavelet packets. NDT and E International 2002 35 3 197 205 2-s2.0-0036532606 10.1016/S0963-8695(01)00044-5 (Pubitemid 33143517)
    • (2002) NDT and E International , vol.35 , Issue.3 , pp. 197-205
    • Nikolaou, N.G.1    Antoniadis, I.A.2
  • 15
    • 31044443061 scopus 로고    scopus 로고
    • Gearbox fault detection using Hilbert and wavelet packet transform
    • DOI 10.1016/j.ymssp.2005.08.032, PII S0888327005002037
    • Fan X. F., Zuo M. J., Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical Systems and Signal Processing 2006 20 4 966 982 2-s2.0-31044443061 10.1016/j.ymssp.2005.08.032 (Pubitemid 43121169)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.4 , pp. 966-982
    • Fan, X.1    Zuo, M.J.2
  • 17
    • 17844365596 scopus 로고    scopus 로고
    • Artificial neural network and support vector machine approach for locating faults in radial distribution systems
    • DOI 10.1109/TPWRD.2005.844307
    • Thukaram D., Khincha H. P., Vijaynarasimha H. P., Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery 2005 20 2 I 710 721 2-s2.0-17844365596 10.1109/TPWRD.2005.844307 (Pubitemid 40583572)
    • (2005) IEEE Transactions on Power Delivery , vol.20 , Issue.2 , pp. 710-721
    • Thukaram, D.1    Khincha, H.P.2    Vijaynarasimha, H.P.3
  • 18
    • 17444403905 scopus 로고    scopus 로고
    • Detecting and approximating fault lines from randomly scattered data
    • DOI 10.1007/s11075-004-3624-y
    • Crampton A., Mason J. C., Detecting and approximating fault lines from randomly scattered data. Numerical Algorithms 2005 39 1-3 115 130 2-s2.0-17444403905 10.1007/s11075-004-3624-y (Pubitemid 40550227)
    • (2005) Numerical Algorithms , vol.39 , Issue.1-3 , pp. 115-130
    • Crampton, A.1    Mason, J.C.2
  • 19
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets - Empirical mode decomposition feature extraction and neural network
    • 2-s2.0-82255174981 10.1016/j.ymssp.2011.08.002
    • Bin G. F., Gao J. J., Li X. J., Dhillon B. S., Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network. Mechanical Systems and Signal Processing 2012 27 1 696 711 2-s2.0-82255174981 10.1016/j.ymssp.2011.08.002
    • (2012) Mechanical Systems and Signal Processing , vol.27 , Issue.1 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 20
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • DOI 10.1016/j.ymssp.2006.01.007, PII S0888327006000306
    • Hu Q., He Z. J., Zhang Z. S., Zi Y. Y., Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mechanical Systems and Signal Processing 2007 21 2 688 705 2-s2.0-33750503791 10.1016/j.ymssp.2006.01.007 (Pubitemid 44667414)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 21
    • 69249220371 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines
    • 2-s2.0-69249220371 10.1016/j.eswa.2009.03.063
    • Xian G.-M., Zeng B.-Q., An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines. Expert Systems with Applications 2009 36 10 12131 12136 2-s2.0-69249220371 10.1016/j.eswa.2009.03. 063
    • (2009) Expert Systems with Applications , vol.36 , Issue.10 , pp. 12131-12136
    • Xian, G.-M.1    Zeng, B.-Q.2
  • 22
    • 84873028042 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier
    • Shen C. Q., Wang D., Kong F. R., Tse P. W., Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 2013 46 1551 1564
    • (2013) Measurement , vol.46 , pp. 1551-1564
    • Shen, C.Q.1    Wang, D.2    Kong, F.R.3    Tse, P.W.4
  • 24
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • Wang T. Y., Lin J. Z., A tutorial on support vector regression. Statistics and Computing 2004 14 3 199 222 2-s2.0-4043137356 10.1023/B:STCO.0000035301.49549.88 (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 25
    • 22344440204 scopus 로고    scopus 로고
    • Fuzzy support vector machine for pattern recognition and data mining
    • Huang H. P., Liu Y. H., Fuzzy support vector machine for pattern recognition and data mining. International Journal of Fuzzy Systems 2002 4 3 826 835
    • (2002) International Journal of Fuzzy Systems , vol.4 , Issue.3 , pp. 826-835
    • Huang, H.P.1    Liu, Y.H.2
  • 28
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • Hsu C.-W., Lin C.-J., A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 2002 13 2 415 425 2-s2.0-0036505670 10.1109/72.991427 (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 29
    • 84896357350 scopus 로고    scopus 로고
    • http://www.spectraquest.com/
  • 30
    • 26444565805 scopus 로고    scopus 로고
    • Statistical pattern recognition toolbox for matlab
    • Czech Technical University in Prague
    • Franc V., Hlavác V., Statistical pattern recognition toolbox for matlab. Research Reports of CMP 2004 Czech Technical University in Prague
    • (2004) Research Reports of CMP
    • Franc, V.1    Hlavác, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.