메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1932-1938

Adaptive error-correcting output codes

Author keywords

[No Author keywords available]

Indexed keywords

BINARY CLASSIFIERS; EFFECTIVENESS AND EFFICIENCIES; EMPIRICAL STUDIES; ERROR CORRECTING OUTPUT CODE; HANDWRITTEN DIGITS RECOGNITION; MULTI-CLASS LEARNING; MULTITASK LEARNING; UCI MACHINE LEARNING REPOSITORY;

EID: 84896064088     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (33)
  • 1
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex Multi-Task Feature Learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 0001531895 scopus 로고
    • Two-point sStep size gradient methods
    • J. Barzilai and J. M. Borwein. Two-point sStep Size Gradient Methods. IMA J. Numer. Anal., 8:141-148, 1988.
    • (1988) IMA J. Numer. Anal. , vol.8 , pp. 141-148
    • Barzilai, J.1    Borwein, J.M.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 85156231916 scopus 로고    scopus 로고
    • Multiclass learning by probabilistic embeddings
    • O. Dekel and Y. Singer. Multiclass Learning by Probabilistic Embeddings. In NIPS, pages 945-952, 2002.
    • (2002) NIPS , pp. 945-952
    • Dekel, O.1    Singer, Y.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Janez Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 8
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error- correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving Multiclass Learning Problems via Error- Correcting Output Codes. J. Artif. Intell. Res. (JAIR), 2:263-286, 1995.
    • (1995) J. Artif. Intell. Res. (JAIR) , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 9
    • 34147151120 scopus 로고    scopus 로고
    • ECOCONE: A novel coding and decoding strategy
    • S. Escalera and O. Pujol. ECOCONE: A Novel Coding and Decoding Strategy. In ICPR, pages 578-581, 2006.
    • (2006) ICPR , pp. 578-581
    • Escalera, S.1    Pujol, O.2
  • 11
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 12
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. Journal of the American Statistical Association, 32:675-701, 1937.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 13
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Annals of Mathematical Statistics, 11:86-92, 1940.
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 14
    • 18744408629 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for text classification with a large number of categories
    • R. Ghani. Combining Labeled and Unlabeled Data for Text Classification with a Large Number of Categories. In ICDM, pages 597-598, 2001.
    • (2001) ICDM , pp. 597-598
    • Ghani, R.1
  • 15
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie and R. Tibshirani. Classification by Pairwise Coupling. Annals of Statistics, 26(2):451-471, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 16
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • X. He and P. Niyogi. Locality Preserving Projections. In NIPS, 2003.
    • (2003) NIPS
    • He, X.1    Niyogi, P.2
  • 18
    • 0035686724 scopus 로고    scopus 로고
    • Face verification using error correcting output codes
    • J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas. Face Verification Using Error Correcting Output Codes. In CVPR (1), pages 755-760, 2001.
    • (2001) CVPR , Issue.1 , pp. 755-760
    • Kittler, J.1    Ghaderi, R.2    Windeatt, T.3    Matas, J.4
  • 19
    • 84867114266 scopus 로고    scopus 로고
    • Learning task grouping and overlap in multi-task learning
    • A. Kumar and H. Daumé III. Learning Task Grouping and Overlap in Multi-task Learning. In ICML, 2012.
    • (2012) ICML
    • Kumar, A.1    Daumé III, H.2
  • 20
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l2,1-norm minimization
    • J. Liu, S. Ji, and J. Ye. Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization. In UAI, pages 339-348, 2009.
    • (2009) UAI , pp. 339-348
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 24
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: A Heuristic Method for Application Dependent Design of Error Correcting Output Codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6):1007-1012, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 1007-1012
    • Pujol, O.1    Radeva, P.2    Vitria, J.3
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 26
    • 84880692052 scopus 로고    scopus 로고
    • A brief introduction to boosting
    • R. E. Schapire. A Brief Introduction to Boosting. In IJCAI, pages 1401-1406, 1999.
    • (1999) IJCAI , pp. 1401-1406
    • Schapire, R.E.1
  • 27
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 28
    • 0042496037 scopus 로고    scopus 로고
    • Discovering structure in multiple learning tasks: The TC algorithm
    • S. Thrun and J. O'Sullivan. Discovering Structure in Multiple Learning Tasks: The TC Algorithm. In ICML, pages 489-497, 1996.
    • (1996) ICML , pp. 489-497
    • Thrun, S.1    O'sullivan, J.2
  • 29
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11:3371-3408, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 30
    • 84857193005 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constraints
    • Z.Wen andW. Yin. A Feasible Method for Optimization with Orthogonality Constraints. Technical report, Rice University, 2010.
    • (2010) Technical Report, Rice University
    • Wen, Z.1    Yin, W.2
  • 32
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang and D.-Y. Yeung. A Convex Formulation for Learning Task Relationships in Multi-Task Learning. In UAI, pages 733-442, 2010.
    • (2010) UAI , pp. 733-442
    • Zhang, Y.1    Yeung, D.-Y.2
  • 33
    • 33947414044 scopus 로고    scopus 로고
    • Unconstrained numeral pair recognition using enhanced error correcting output coding: A holistic approach
    • J. Zhou and C. Y. Suen. Unconstrained Numeral Pair Recognition Using Enhanced Error Correcting Output Coding: A Holistic Approach. In ICDAR, pages 484-488, 2005.
    • (2005) ICDAR , pp. 484-488
    • Zhou, J.1    Suen, C.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.