메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1910-1916

Multi-view embedding learning for incompletely labeled data

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; EXPERIMENTAL EVALUATION; FEATURE CORRELATION; HETEROGENEOUS FEATURES; MULTIPLE FEATURES; NEAREST NEIGHBOR SEARCH; OPTIMAL COMBINATION; REAL-WORLD DATASETS;

EID: 84896061245     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (34)
  • 1
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
    • (2001) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 77955989956 scopus 로고    scopus 로고
    • Data fusion through cross-modality metric learning using similarity-sensitive hashing
    • Michael M. Bronstein, Alexander M. Bronstein, Fabrice Michel, and Nikos Paragios. Data fusion through cross-modality metric learning using similarity-sensitive hashing. In CVPR, 2010.
    • (2010) CVPR
    • Bronstein, M.M.1    Bronstein, A.M.2    Michel, F.3    Paragios, N.4
  • 3
    • 24644496298 scopus 로고    scopus 로고
    • Local discriminant embedding and its variants
    • H.-T. Chen, H.-W. Chang, and T.-L. Liu. Local discriminant embedding and its variants. In CVPR, 2005.
    • (2005) CVPR
    • Chen, H.-T.1    Chang, H.-W.2    Liu, T.-L.3
  • 4
    • 77956007413 scopus 로고    scopus 로고
    • Tag-based web photo retrieval improved by batch mode re-tagging
    • Lin Chen, Dong Xu, Ivor W. Tsang, and Jiebo Luo. Tag-based web photo retrieval improved by batch mode re-tagging. In CVPR, 2010.
    • (2010) CVPR
    • Chen, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 5
    • 74049158146 scopus 로고    scopus 로고
    • Nuswide: A real-world web image database from national university of singapore
    • Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao Zheng. Nuswide: A real-world web image database from national university of singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.-T.6
  • 6
    • 85162328823 scopus 로고    scopus 로고
    • Multi-view learning of word embeddings via cca
    • Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word embeddings via cca. In NIPS, 2011.
    • (2011) NIPS
    • Dhillon, P.S.1    Foster, D.2    Ungar, L.3
  • 7
    • 85162328823 scopus 로고    scopus 로고
    • Multi-view learning of word embeddings via cca
    • Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word embeddings via cca. In NIPS, 2011.
    • (2011) NIPS
    • Dhillon, P.S.1    Foster, D.2    Ungar, L.3
  • 8
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Andre Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In NIPS, 2002.
    • (2002) NIPS
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In CVPR, 2004.
    • (2004) CVPR
    • Feng, S.L.1    Manmatha, R.2    Lavrenko, V.3
  • 10
    • 84896064011 scopus 로고    scopus 로고
    • Multi-modal constraint propagation for heterogeneous image clustering
    • Zhenyong Fu, Horace H.S. Ip, Hongtao Lu, and Zhiwu Lu. Multi-modal constraint propagation for heterogeneous image clustering. In ACM MM, 2011.
    • (2011) ACM MM
    • Fu, Z.1    Ip, H.H.S.2    Lu, H.3    Lu, Z.4
  • 11
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, 2009.
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 12
    • 80053439042 scopus 로고    scopus 로고
    • Learning from multiple outlooks
    • Maayan Harel and Shie Mannor. Learning from multiple outlooks. In ICML, 2011.
    • (2011) ICML
    • Harel, M.1    Mannor, S.2
  • 13
    • 15044358511 scopus 로고    scopus 로고
    • Face recognition using laplacianfaces
    • X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recognition using laplacianfaces. TPAMI, 27(3):328-340, 2005.
    • (2005) TPAMI , vol.27 , Issue.3 , pp. 328-340
    • He, X.1    Yan, S.2    Hu, Y.3    Niyogi, P.4    Zhang, H.5
  • 14
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28(4):321-377, 1936.
    • (1936) Biometrika , vol.28 , Issue.4 , pp. 321-377
    • Hotelling, H.1
  • 15
    • 80053441153 scopus 로고    scopus 로고
    • A co-training approach for multi-view spectral clustering
    • Abhishek Kumar and Hal Daume. A co-training approach for multi-view spectral clustering. In ICML, 2011.
    • (2011) ICML
    • Kumar, A.1    Daume, H.2
  • 16
    • 84866034209 scopus 로고    scopus 로고
    • Learning hash functions for cross-view similarity search
    • Shaishav Kumar and Raghavendra Udupa. Learning hash functions for cross-view similarity search. In IJCAI, 2011.
    • (2011) IJCAI
    • Kumar, S.1    Udupa, R.2
  • 17
    • 85162436778 scopus 로고    scopus 로고
    • Co-regularized multi-view spectral clustering
    • Abhishek Kumar, Piyush Rai, and Hal Daume III. Co-regularized multi-view spectral clustering. In NIPS, 2011.
    • (2011) NIPS
    • Kumar, A.1    Rai, P.2    Daume III, H.3
  • 18
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic regression. In ICML, 2003.
    • (2003) ICML
    • Lee, W.S.1    Liu, B.2
  • 19
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 79951514444 scopus 로고    scopus 로고
    • Unified tag analysis with multi-edge graph
    • Dong Liu, Shuicheng Yan, Yong Rui, and Hong-Jiang Zhang. Unified tag analysis with multi-edge graph. In ACM MM, 2010.
    • (2010) ACM MM
    • Liu, D.1    Yan, S.2    Rui, Y.3    Zhang, H.-J.4
  • 21
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised learning. In ICML, 2010.
    • (2010) ICML
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 22
    • 84896063917 scopus 로고    scopus 로고
    • Semantic context learning with large-scale weakly-labeled image set
    • Yao Lu, Wei Zhang, Ke Zhang, and Xiangyang Xue. Semantic context learning with large-scale weakly-labeled image set. In CIKM, 2012.
    • (2012) CIKM
    • Lu, Y.1    Zhang, W.2    Zhang, K.3    Xue, X.4
  • 23
    • 85162000125 scopus 로고    scopus 로고
    • Reverse multi-label learning
    • James Petterson and Tiberio Caetano. Reverse multi-label learning. In NIPS, 2010.
    • (2010) NIPS
    • Petterson, J.1    Caetano, T.2
  • 24
    • 80053439603 scopus 로고    scopus 로고
    • Learning multi-view neighborhood preserving projections
    • Novi Quadrianto and Christoph H. Lampert. Learning multi-view neighborhood preserving projections. In ICML, 2011.
    • (2011) ICML
    • Quadrianto, N.1    Lampert, C.H.2
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 27
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 28
    • 84881247382 scopus 로고    scopus 로고
    • Multi-label learning with weak label
    • Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. Multi-label learning with weak label. In AAAI, 2010.
    • (2010) AAAI
    • Sun, Y.-Y.1    Zhang, Y.2    Zhou, Z.-H.3
  • 29
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: A least-squares formulation extensions, and analysis
    • Liang Sun, Shuiwang Ji, and Jieping Ye. Canonical correlation analysis for multilabel classification: A least-squares formulation extensions, and analysis. In TPAMI, 2011.
    • (2011) TPAMI
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 30
    • 34948858988 scopus 로고    scopus 로고
    • Content-based image annotation refinement
    • Changhu Wang, Feng Jing, Lei Zhang, and Hong-Jiang Zhang. Content-based image annotation refinement. In CVPR, 2007.
    • (2007) CVPR
    • Wang, C.1    Jing, F.2    Zhang, L.3    Zhang, H.-J.4
  • 32
    • 78049346655 scopus 로고    scopus 로고
    • Multi-label dimensionality reduction via dependence maximization
    • Yin Zhang and Zhi-Hua Zhou. Multi-label dimensionality reduction via dependence maximization. In TKDD, 2010.
    • (2010) TKDD
    • Zhang, Y.1    Zhou, Z.-H.2
  • 33
    • 51949083910 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • Dengyong Zhou and Christopher J.C. Burges. Spectral clustering and transductive learning with multiple views. In ICML, 2007.
    • (2007) ICML
    • Zhou, D.1    Burges, C.J.C.2
  • 34
    • 57949083825 scopus 로고    scopus 로고
    • Semi-supervised learning with very few labeled training examples
    • Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. Semi-supervised learning with very few labeled training examples. In AAAI, 2007.
    • (2007) AAAI
    • Zhou, Z.-H.1    Zhan, D.-C.2    Yang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.