메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1785-1791

Deep feature learning using target priors with applications in ECoG signal decoding for BCI

Author keywords

[No Author keywords available]

Indexed keywords

DECODING PERFORMANCE; DEEP FEATURE LEARNING; LABELED AND UNLABELED DATA; RESTRICTED BOLTZMANN MACHINE; SEMI-SUPERVISED LEARNING; STATE-OF-THE-ART ALGORITHMS; UNSUPERVISED FEATURE LEARNING; WEAKLY SUPERVISED LEARNING;

EID: 84896060772     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (33)
  • 2
    • 78649298728 scopus 로고    scopus 로고
    • Band-specific features improve Finger Flexion Prediction from ECoG
    • Parana, Argentine
    • Laurent Bougrain and Nanying Liang. Band-specific features improve Finger Flexion Prediction from ECoG. In JAICC, Parana, Argentine, 2009.
    • (2009) JAICC
    • Bougrain, L.1    Liang, N.2
  • 3
    • 57749120009 scopus 로고    scopus 로고
    • Guiding semi-supervision with constraint-driven learning
    • Mingwei Chang, Lev Ratinov, and Dan Roth. Guiding semi-supervision with constraint-driven learning. In ACL, 2007.
    • (2007) ACL
    • Chang, M.1    Ratinov, L.2    Roth, D.3
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • 2000
    • Geoffrey Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:2002, 2000.
    • (2002) Neural Computation , vol.14
    • Hinton, G.1
  • 10
    • 72849141331 scopus 로고    scopus 로고
    • Decoding flexion of individual fingers using electrocorticographic signals in humans
    • Dec
    • J Kubánek, K J Miller, J G Ojemann, J R Wolpaw, and G Schalk. Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng, 6(6):066001-066001, Dec 2009.
    • (2009) J Neural Eng , vol.6 , Issue.6 , pp. 066001-066001
    • Kubánek, J.1    Miller, K.J.2    Ojemann, J.G.3    Wolpaw, J.R.4    Schalk, G.5
  • 12
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Quoc V. Le, Will Y. Zou, Serena Y. Yeung, and Andrew Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, pages 3361-3368, 2011.
    • (2011) CVPR , pp. 3361-3368
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 13
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Quoc Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado, Jeff Dean, and Andrew Ng. Building high-level features using large scale unsupervised learning. In ICML, 2012.
    • (2012) ICML
    • Le, Q.1    Ranzato, M.2    Monga, R.3    Devin, M.4    Chen, K.5    Corrado, G.6    Dean, J.7    Ng, A.8
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 15
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616, 2009.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 16
    • 84872510849 scopus 로고    scopus 로고
    • Weakly supervised classification of objects in images using soft random forests
    • Riwal Lefort, Ronan Fablet, and Jean-Marc Boucher. Weakly supervised classification of objects in images using soft random forests. In ECCV, 2010.
    • (2010) ECCV
    • Lefort, R.1    Fablet, R.2    Boucher, J.-M.3
  • 17
    • 84896063359 scopus 로고    scopus 로고
    • Decoding finger flexion using amplitude modulation from bandspecific ECoG
    • April
    • Nanying Liang and Laurent Bougrain. Decoding finger flexion using amplitude modulation from bandspecific ECoG. Neural Networks, (April):22-24, 2009.
    • (2009) Neural Networks , pp. 22-24
    • Liang, N.1    Bougrain, L.2
  • 18
    • 71149098112 scopus 로고    scopus 로고
    • Learning from measurements in exponential families
    • NY, USA
    • Percy Liang, Michael I. Jordan, and Dan Klein. Learning from measurements in exponential families. In ICML '09, pages 641-648, NY, USA, 2009.
    • (2009) ICML '09 , pp. 641-648
    • Liang, P.1    Jordan, M.I.2    Klein, D.3
  • 19
    • 56449123826 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning via expectation regularization
    • Gideon S. Mann and Andrew McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, 2007.
    • (2007) ICML
    • Mann, G.S.1    McCallum, A.2
  • 20
    • 54949142828 scopus 로고    scopus 로고
    • Brain-computer interface operation of robotic and prosthetic devices
    • oct.
    • D.J. McFarland and J.R. Wolpaw. Brain-computer interface operation of robotic and prosthetic devices. Computer, (10), oct. 2008.
    • (2008) Computer , Issue.10
    • McFarland, D.J.1    Wolpaw, J.R.2
  • 22
    • 78149306047 scopus 로고    scopus 로고
    • 3D object recognition with deep belief nets
    • Vinod Nair and Geoffrey Hinton. 3D Object Recognition with Deep Belief Nets. In NIPS, pages 1339- 1347. 2009.
    • (2009) NIPS , pp. 1339-1347
    • Nair, V.1    Hinton, G.2
  • 23
    • 80053162579 scopus 로고    scopus 로고
    • Sum-product networks: A new deep architecture
    • Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In UAI, pages 337-346, 2011.
    • (2011) UAI , pp. 337-346
    • Poon, H.1    Domingos, P.2
  • 25
  • 26
    • 78149489390 scopus 로고    scopus 로고
    • Decoding finger flexion from electrocorticographic signals using a sparse gaussian process
    • Zuoguan Wang, Qiang Ji, Kai J. Miller, and Gerwin Schalk. Decoding finger flexion from electrocorticographic signals using a sparse gaussian process. In ICPR, pages 3756-3759, 2010.
    • (2010) ICPR , pp. 3756-3759
    • Wang, Z.1    Ji, Q.2    Miller, K.J.3    Schalk, G.4
  • 27
    • 84861902365 scopus 로고    scopus 로고
    • Prior knowledge improves decoding of finger flexion from electrocorticographic (ECoG) signals
    • Zuoguan Wang, qiang ji, Kai J Miller, and Gerwin Schalk. Prior knowledge improves decoding of finger flexion from electrocorticographic (ECoG) signals. Frontiers in Neuroscience, 5(127), 2011.
    • (2011) Frontiers in Neuroscience , vol.5 , Issue.127
    • Wang, Z.1    Ji, Q.2    Miller, K.J.3    Schalk, G.4
  • 28
    • 85162362828 scopus 로고    scopus 로고
    • Anatomically constrained decoding of finger flexion from electrocorticographic signals
    • Zuoguan Wang, Gerwin Schalk, and Qiang Ji. Anatomically constrained decoding of finger flexion from electrocorticographic signals. NIPS, 2011.
    • (2011) NIPS
    • Wang, Z.1    Schalk, G.2    Ji, Q.3
  • 30
    • 84877770857 scopus 로고    scopus 로고
    • Learning with target prior
    • Zuoguan Wang, Siwei Lyu, Gerwin Schalk, and Qiang Ji. Learning with target prior. In NIPS, 2012.
    • (2012) NIPS
    • Wang, Z.1    Lyu, S.2    Schalk, G.3    Ji, Q.4
  • 31
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • April
    • Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural Comput., April 2002.
    • (2002) Neural Comput.
    • Wiskott, L.1    Sejnowski, T.J.2
  • 32
    • 79957967845 scopus 로고    scopus 로고
    • Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
    • D F Wulsin, J R Gupta, R Mani, J A Blanco, and B Litt. Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. Journal of Neural Engineering, 8(3):036015, 2011.
    • (2011) Journal of Neural Engineering , vol.8 , Issue.3 , pp. 036015
    • Wulsin, D.F.1    Gupta, J.R.2    Mani, R.3    Blanco, J.A.4    Litt, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.