메뉴 건너뛰기




Volumn 7334, Issue , 2009, Pages

Accelerating hyperspectral manifold learning using graphical processing units

Author keywords

GPUs; Hyperspectral Image Classification; Manifold Learning

Indexed keywords

FEATURE EXTRACTION ALGORITHMS; GENERAL PURPOSE; GEOMETRICAL PROPERTY; GPUS; GRAPHICAL PROCESSING UNITS; HIGH DIMENSIONAL SPACES; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL; HYPERSPECTRAL IMAGE CLASSIFICATION; LAPLACIAN EIGENMAPS; LOCAL LINEAR EMBEDDING; MACHINE-LEARNING; MANIFOLD LEARNING; MANIFOLD LEARNING ALGORITHM; NON-LINEAR MANIFOLD LEARNING; SPATIAL INFORMATIONS; SPECTRAL VALUE; SPEED-UPS;

EID: 69949126026     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.820176     Document Type: Conference Paper
Times cited : (7)

References (16)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol.290, no.5000, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5000 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 3
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K.Q. Weinberger and L.K. Saul, "Unsupervised learning of image manifolds by semidefinite programming, " International Journal of Computer Vision, vol.70, no.1, pp.77-90, 2005.
    • (2005) International Journal of Computer Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding, " Science, vol.290, no.5500.
    • Science , vol.290 , Issue.5500
    • Roweis, S.1    Saul, L.2
  • 6
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol.290, no.5500, pp. 2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 7
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • Kruskal J. B., "Nonmetric multidimensional scaling: a numerical method, " Psychometrika, , no.29, pp. 115 - 130, 1964.
    • (1964) Psychometrika , Issue.29 , pp. 115-130
    • Kruskal, J.B.1
  • 11
    • 50249187587 scopus 로고    scopus 로고
    • Parallel processing of remotely sensed hyperspectral imagery: Full-pixel versus mixed-pixel classification
    • A. Plaza., "Parallel processing of remotely sensed hyperspectral imagery: Full-pixel versus mixed-pixel classification, " Concurrency and Computation: Practice and Experience, vol.20, no.13, pp. 1539-1572, 2008.
    • (2008) Concurrency and Computation: Practice and Experience , vol.20 , Issue.13 , pp. 1539-1572
    • Plaza, A.1
  • 14
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • November
    • Q. Jackson and D. Landgreve, "Adaptive Bayesian Contextual Classification Based on Markov Random Fields", IEEE Transaction on Geoscience and Remote Sensing, vol.40, no.11, pp. 2454-2463, November 2002.
    • (2002) IEEE Transaction on Geoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgreve, D.2
  • 15
    • 34948892577 scopus 로고    scopus 로고
    • Incorporating spatial contiguity into the design of a support vector machine classifier
    • 2007
    • M. Dundar, J. Theiler, and S. Perkins, "Incorporating Spatial Contiguity into the Design of a Support Vector Machine Classifier" Proc. IGARSS (2006) 364-367, 2007.
    • (2006) Proc. IGARSS , pp. 364-367
    • Dundar, M.1    Theiler, J.2    Perkins, S.3
  • 16


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.