-
1
-
-
34548832230
-
A fast diffeomorphic image registration algorithm
-
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38:95-113.
-
(2007)
Neuroimage
, vol.38
, pp. 95-113
-
-
Ashburner, J.1
-
2
-
-
0033933649
-
Voxel-based morphometry-the methods
-
Ashburner J., Friston K.J. Voxel-based morphometry-the methods. NeuroImage 2000, 11(6):805-821.
-
(2000)
NeuroImage
, vol.11
, Issue.6
, pp. 805-821
-
-
Ashburner, J.1
Friston, K.J.2
-
3
-
-
1542365112
-
Dimensionality reduction via sparse support vector machines
-
Bi J., Bennett K., Embrechts M., Breneman C., Song M. Dimensionality reduction via sparse support vector machines. JMLR 2003, 3:1229-1243.
-
(2003)
JMLR
, vol.3
, pp. 1229-1243
-
-
Bi, J.1
Bennett, K.2
Embrechts, M.3
Breneman, C.4
Song, M.5
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
79952704626
-
Penalized least squares regression methods and applications to neuroimaging
-
Bunea F., She Y., Ombao H., Gongvatana A., Devlin K., Cohen R. Penalized least squares regression methods and applications to neuroimaging. NeuroImage 2011, 55(4):1519-1527.
-
(2011)
NeuroImage
, vol.55
, Issue.4
, pp. 1519-1527
-
-
Bunea, F.1
She, Y.2
Ombao, H.3
Gongvatana, A.4
Devlin, K.5
Cohen, R.6
-
6
-
-
55149117963
-
Prediction and interpretation of distributed neural activity with sparse models
-
Carroll M.K., Cecchi G.A., Rish I., Garg R., Rao A.R. Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 2009, 44(1):112-122.
-
(2009)
NeuroImage
, vol.44
, Issue.1
, pp. 112-122
-
-
Carroll, M.K.1
Cecchi, G.A.2
Rish, I.3
Garg, R.4
Rao, A.R.5
-
7
-
-
84862776712
-
Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
-
Chu C., Hsu A., Chou K., Bandettini P., Lin C. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 2012, 60(1):59-70.
-
(2012)
Neuroimage
, vol.60
, Issue.1
, pp. 59-70
-
-
Chu, C.1
Hsu, A.2
Chou, K.3
Bandettini, P.4
Lin, C.5
-
8
-
-
68149169975
-
Prognostic and diagnostic potential of the structural neuroanatomy of depression
-
07
-
Costafreda S.G., Chu C., Ashburner J., Fu C.H. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 2009, 4:e6353. 07.
-
(2009)
PLoS ONE
, vol.4
-
-
Costafreda, S.G.1
Chu, C.2
Ashburner, J.3
Fu, C.H.4
-
10
-
-
79955059574
-
Automatic classification of patients with alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
-
The Alzheimer's Disease Neuroimaging Initiative
-
Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehéricy S., Habert M.-O., Chupin M., Benali H., Colliot O. Automatic classification of patients with alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011, 56(2):766-781. The Alzheimer's Disease Neuroimaging Initiative.
-
(2011)
Neuroimage
, vol.56
, Issue.2
, pp. 766-781
-
-
Cuingnet, R.1
Gerardin, E.2
Tessieras, J.3
Auzias, G.4
Lehéricy, S.5
Habert, M.-O.6
Chupin, M.7
Benali, H.8
Colliot, O.9
-
11
-
-
52049116700
-
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
-
De Martino F., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 2008, 43(1):44-58.
-
(2008)
NeuroImage
, vol.43
, Issue.1
, pp. 44-58
-
-
De Martino, F.1
Valente, G.2
Staeren, N.3
Ashburner, J.4
Goebel, R.5
Formisano, E.6
-
12
-
-
70349964707
-
Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
-
Ecker C., Rocha-Rego V., Johnston P., Mourão-Miranda J., Marquand A., Daly E.M., Brammer M.J., Murphy C., Murphy D.G. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage 2010, 49(1):44-56.
-
(2010)
NeuroImage
, vol.49
, Issue.1
, pp. 44-56
-
-
Ecker, C.1
Rocha-Rego, V.2
Johnston, P.3
Mourão-Miranda, J.4
Marquand, A.5
Daly, E.M.6
Brammer, M.J.7
Murphy, C.8
Murphy, D.G.9
-
13
-
-
0002344794
-
Bootstrap methods: another look at the jackknife
-
Efron B. Bootstrap methods: another look at the jackknife. Ann. Statist. 1979, 7(1):1-26.
-
(1979)
Ann. Statist.
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
15
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., Elisseeff A. An introduction to variable and feature selection. JMLR 2003, 3:1157-1182.
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
16
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1-3).
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
17
-
-
0024205564
-
The epidemiology of obsessive-compulsive disorder in five US communities
-
Karno M., Golding J.M., Sorenson S.B., Burnam M.A. The epidemiology of obsessive-compulsive disorder in five US communities. Arch. Gen. Psychiatry 1988, 45(12):1094-1099.
-
(1988)
Arch. Gen. Psychiatry
, vol.45
, Issue.12
, pp. 1094-1099
-
-
Karno, M.1
Golding, J.M.2
Sorenson, S.B.3
Burnam, M.A.4
-
18
-
-
0031381525
-
Wrappers for feature selection
-
Kohavi R., John G. Wrappers for feature selection. Artif. Intell. 1997, 97(1-2):273-324.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
19
-
-
79954990666
-
Introduction to machine learning for brain imaging
-
Lemm S., Blankertz B., Dickhaus T., Muller K.-R. Introduction to machine learning for brain imaging. NeuroImage 2011, 56(2):387-399.
-
(2011)
NeuroImage
, vol.56
, Issue.2
, pp. 387-399
-
-
Lemm, S.1
Blankertz, B.2
Dickhaus, T.3
Muller, K.-R.4
-
20
-
-
38649135063
-
Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited
-
Menzies L., Chamberlain S., Laird A., Thelen S., Sahakian B., Bullmore E. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 2008, 32(3):525-549.
-
(2008)
Neurosci. Biobehav. Rev.
, vol.32
, Issue.3
, pp. 525-549
-
-
Menzies, L.1
Chamberlain, S.2
Laird, A.3
Thelen, S.4
Sahakian, B.5
Bullmore, E.6
-
21
-
-
79959811645
-
Total variation regularization for fMRI-based prediction of behaviour
-
Michel V., Gramfort A., Varoquaux G., Eger E., Thirion B. Total variation regularization for fMRI-based prediction of behaviour. IEEE Trans. Med. Imag. 2011, 30(7):1328-1340.
-
(2011)
IEEE Trans. Med. Imag.
, vol.30
, Issue.7
, pp. 1328-1340
-
-
Michel, V.1
Gramfort, A.2
Varoquaux, G.3
Eger, E.4
Thirion, B.5
-
22
-
-
84855312031
-
Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways
-
Milad M., Rauch S. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cognit. Sci. 2012, 16(1):43-51.
-
(2012)
Trends Cognit. Sci.
, vol.16
, Issue.1
, pp. 43-51
-
-
Milad, M.1
Rauch, S.2
-
23
-
-
3242802095
-
Learning to decode cognitive states from brain images
-
Mitchell T.M., Hutchinson R., Niculescu R.S., Pereira F., Wang X., Just M., Newman S. Learning to decode cognitive states from brain images. Mach. Learn. 2004, 57(1-2):145-175.
-
(2004)
Mach. Learn.
, vol.57
, Issue.1-2
, pp. 145-175
-
-
Mitchell, T.M.1
Hutchinson, R.2
Niculescu, R.S.3
Pereira, F.4
Wang, X.5
Just, M.6
Newman, S.7
-
24
-
-
28244492778
-
Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
-
Mourão Miranda J., Bokde A.L., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 2005, 28(4):980-995.
-
(2005)
NeuroImage
, vol.28
, Issue.4
, pp. 980-995
-
-
Mourão Miranda, J.1
Bokde, A.L.2
Born, C.3
Hampel, H.4
Stetter, M.5
-
25
-
-
84857000430
-
Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
-
Orrù G., Pettersson-Yeo W., Marquand A.F., Sartori G., Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 2012, 36(4):1140-1152.
-
(2012)
Neurosci. Biobehav. Rev.
, vol.36
, Issue.4
, pp. 1140-1152
-
-
Orrù, G.1
Pettersson-Yeo, W.2
Marquand, A.F.3
Sartori, G.4
Mechelli, A.5
-
26
-
-
84870029056
-
Identification of OCD-relevant brain areas through multivariate feature selection
-
Springer, Berlin Heidelberg, G. Langs, I. Rish, M. Grosse-Wentrup, B. Murphy (Eds.)
-
Parrado-Hernandez E., Gomez-Verdejo V., Martinez-Ramon M., Alonso P., Pujol J., Menchon J., Cardoner N., Soriano-Mas C. Identification of OCD-relevant brain areas through multivariate feature selection. Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science 2012, 60-67. Springer, Berlin Heidelberg. G. Langs, I. Rish, M. Grosse-Wentrup, B. Murphy (Eds.).
-
(2012)
Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science
, pp. 60-67
-
-
Parrado-Hernandez, E.1
Gomez-Verdejo, V.2
Martinez-Ramon, M.3
Alonso, P.4
Pujol, J.5
Menchon, J.6
Cardoner, N.7
Soriano-Mas, C.8
-
27
-
-
84867814036
-
-
Voxel selection in MRI through bagging and conformal analysis: Application to detection of obsessive compulsive disorder. In: International Workshop on Pattern Recognition in NeuroImaging (PRNI)
-
Parrado-Hernandez, E., Gomez-Verdejo, V., Martinez-Ramon, M., Shawe-Taylor, J., Alonso, P., Pujol, J., Menchon, J., Cardoner, N., Soriano-Mas, C., 2012b. Voxel selection in MRI through bagging and conformal analysis: Application to detection of obsessive compulsive disorder. In: International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 49-52.
-
(2012)
, pp. 49-52
-
-
Parrado-Hernandez, E.1
Gomez-Verdejo, V.2
Martinez-Ramon, M.3
Shawe-Taylor, J.4
Alonso, P.5
Pujol, J.6
Menchon, J.7
Cardoner, N.8
Soriano-Mas, C.9
-
28
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson K. On lines and planes of closest fit to systems of points in space. Philos. Magaz. 1901, 2(6):559-572.
-
(1901)
Philos. Magaz.
, vol.2
, Issue.6
, pp. 559-572
-
-
Pearson, K.1
-
29
-
-
3042784272
-
Mapping structural brain alterations in obsessive-compulsive disorder
-
Pujol J., Soriano-Mas C., Alonso P., Cardoner N., Menchón J.M., Deus J., Vallejo J. Mapping structural brain alterations in obsessive-compulsive disorder. Arch. Gen. Psych. 2004, 61(7):720-730.
-
(2004)
Arch. Gen. Psych.
, vol.61
, Issue.7
, pp. 720-730
-
-
Pujol, J.1
Soriano-Mas, C.2
Alonso, P.3
Cardoner, N.4
Menchón, J.M.5
Deus, J.6
Vallejo, J.7
-
31
-
-
70450211847
-
Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder
-
Radua J., Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Brit. J. Psych. 2009, 195(5):393-402.
-
(2009)
Brit. J. Psych.
, vol.195
, Issue.5
, pp. 393-402
-
-
Radua, J.1
Mataix-Cols, D.2
-
32
-
-
77951976541
-
Sparse logistic regression for whole-brain classification of fMRI data
-
Ryali S., Supekar K., Abrams D.A., Menon V. Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 2010, 51(2):752-764.
-
(2010)
NeuroImage
, vol.51
, Issue.2
, pp. 752-764
-
-
Ryali, S.1
Supekar, K.2
Abrams, D.A.3
Menon, V.4
-
33
-
-
34047161656
-
Identifying patients with obsessive-compulsive disorder using whole-brain anatomy
-
Soriano-Mas C., Pujol J., Alonso P., Cardoner N., Menchón J.M., Harrison B.J., Deus J., Vallejo J., Gaser C. Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage 2007, 35(3):1028-1037.
-
(2007)
NeuroImage
, vol.35
, Issue.3
, pp. 1028-1037
-
-
Soriano-Mas, C.1
Pujol, J.2
Alonso, P.3
Cardoner, N.4
Menchón, J.M.5
Harrison, B.J.6
Deus, J.7
Vallejo, J.8
Gaser, C.9
-
34
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani R. Regression shrinkage and selection via the LASSO. J. R. Statist. Soc., Ser. B 1994, 58:267-288.
-
(1994)
J. R. Statist. Soc., Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
35
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
Torkkola K., Guyon I., Elisseeff A. Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 2003, 3:1415-1438.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
Guyon, I.2
Elisseeff, A.3
-
36
-
-
75249099795
-
Efficient bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
-
van Gerven M.A., Cseke B., de Lange F.P., Heskes T. Efficient bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 2010, 50(1):150-161.
-
(2010)
NeuroImage
, vol.50
, Issue.1
, pp. 150-161
-
-
van Gerven, M.A.1
Cseke, B.2
de Lange, F.P.3
Heskes, T.4
-
38
-
-
84867118966
-
-
Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. In: Proceedings of the 29th International Conference on Machine Learning.
-
Varoquaux, G., Gramfort, A., Thirion, B., 2012. Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. In: Proceedings of the 29th International Conference on Machine Learning.
-
(2012)
-
-
Varoquaux, G.1
Gramfort, A.2
Thirion, B.3
-
39
-
-
84892133506
-
-
Springer, New York, NY
-
Vovk V., Gammerman A., Shafer G. Algorithmic Learning in a Random World 2005, Springer, New York, NY.
-
(2005)
Algorithmic Learning in a Random World
-
-
Vovk, V.1
Gammerman, A.2
Shafer, G.3
-
40
-
-
77950588524
-
High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
-
Wang Y., Fan Y., Bhatt P., Davatzikos C. High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage 2010, 50(4):1519-1535.
-
(2010)
NeuroImage
, vol.50
, Issue.4
, pp. 1519-1535
-
-
Wang, Y.1
Fan, Y.2
Bhatt, P.3
Davatzikos, C.4
-
41
-
-
55349089531
-
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
-
Yamashita O., aki Sato M., Yoshioka T., Tong F., Kamitani Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 2008, 42(4):1414-1429.
-
(2008)
NeuroImage
, vol.42
, Issue.4
, pp. 1414-1429
-
-
Yamashita, O.1
Aki Sato, M.2
Yoshioka, T.3
Tong, F.4
Kamitani, Y.5
-
42
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R. Statist. Soc.: Ser. B (Statist. Method.) 2006, 68(1):49-67.
-
(2006)
J. R. Statist. Soc.: Ser. B (Statist. Method.)
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
43
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H., Hastie T. Regularization and variable selection via the elastic net. R. Statist. Soc. 2005, 67(2):301-320.
-
(2005)
R. Statist. Soc.
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|