메뉴 건너뛰기




Volumn 14, Issue , 2012, Pages 1035-1040

Historical weather data supported hybrid renewable energy forecasting using artificial neural network (ANN)

Author keywords

Feedforward network; Historical weather data; Hybrid forecasting; Neural network; Renewable energy

Indexed keywords

CLIMATE MODELS; HYBRID SYSTEMS; LEARNING ALGORITHMS; MATLAB; METEOROLOGY; NEURAL NETWORKS; SOLAR ENERGY;

EID: 84858386389     PISSN: 18766102     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.egypro.2011.12.1048     Document Type: Conference Paper
Times cited : (26)

References (9)
  • 1
    • 85133462095 scopus 로고    scopus 로고
    • Long-term research and development needs for wind energy for the time frame 2000-2020
    • Thor, S. E. and Weis Taylor, P. Long-term research and development needs for wind energy for the time frame 2000-2020, Wind Energy, 5:73-75, 2003.
    • (2003) Wind Energy , vol.5 , pp. 73-75
    • Thor, S.E.1    Weis Taylor, P.2
  • 2
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • May
    • L. Ma, S. Y. Luan, C. W. Jiang, H. L. Liu, and Y. Zhang. A review on the forecasting of wind speed and generated power. Renew. Sust. Energy Rev., vol. 13, pp. 915-920, May 2009.
    • (2009) Renew. Sust. Energy Rev. , vol.13 , pp. 915-920
    • Ma, L.1    Luan, S.Y.2    Jiang, C.W.3    Liu, H.L.4    Zhang, Y.5
  • 4
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Feb.
    • G. Sideratos and N. D. Hatziargyriou. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst., vol. 22, pp. 258- 265, Feb. 2007.
    • (2007) IEEE Trans. Power Syst. , vol.22 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 5
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for Tasmanian power generation
    • May
    • C. W. Potter and W. Negnevitsky. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst., vol. 21, pp. 965-972, May 2006.
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, W.2
  • 6
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Oct.-Dec.
    • R. Jursa, K. Rohrig. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast., vol. 24, pp. 694-709, Oct.-Dec. 2008.
    • (2008) Int. J. Forecast. , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 7
    • 34548790280 scopus 로고    scopus 로고
    • Improved grey predictor rolling models for wind power prediction
    • Nov.
    • T. H. M. El-Fouly, E. F. El-Saadany, and M. M. A. Salama. Improved grey predictor rolling models for wind power prediction. IET Gener, Transm, Distrib, vol. 1, pp. 928-937, Nov. 2007.
    • (2007) IET Gener, Transm, Distrib , vol.1 , pp. 928-937
    • El-Fouly, T.H.M.1    El-Saadany, E.F.2    Salama, M.M.A.3
  • 8
    • 52349098331 scopus 로고    scopus 로고
    • Improvement in wind power forecasting based on information entropy-related concepts
    • Pittsburgh, Pennsylvania, July
    • R. Bessa, V. Miranda, and J. Gama. Improvement in wind power forecasting based on information entropy-related concepts. Presented at the 2008 IEEE Power & Energy Society General Meeting, Pittsburgh, Pennsylvania. July, 2008.
    • (2008) 2008 IEEE Power & Energy Society General Meeting
    • Bessa, R.1    Miranda, V.2    Gama, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.