메뉴 건너뛰기




Volumn 98, Issue , 2012, Pages 425-432

Application of artificial neural network to predict thermal transmittance of wooden windows

Author keywords

Artificial neural network; Experimental data; French windows; Thermal transmittance prediction; Wooden windows

Indexed keywords

FORECASTING; GLAZES; MIXED CONVECTION; NEURAL NETWORKS; STATISTICAL TESTS;

EID: 84862183832     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2012.04.004     Document Type: Article
Times cited : (38)

References (25)
  • 2
    • 0347517469 scopus 로고    scopus 로고
    • Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions
    • Oral G.K., Yener A.K., Bayazit N.T. Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions. Build Environ 2004, 3:281-287.
    • (2004) Build Environ , vol.3 , pp. 281-287
    • Oral, G.K.1    Yener, A.K.2    Bayazit, N.T.3
  • 3
    • 84862193645 scopus 로고    scopus 로고
    • Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings
    • Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings; 2010.
    • (2010)
  • 8
    • 79956373113 scopus 로고    scopus 로고
    • Thermal transmittance measurements with the hot box method: calibration, experimental procedures, and uncertainty analyses of three different approaches
    • Asdrubali F., Baldinelli G. Thermal transmittance measurements with the hot box method: calibration, experimental procedures, and uncertainty analyses of three different approaches. Energy Buildings 2011, 43:1618-1626.
    • (2011) Energy Buildings , vol.43 , pp. 1618-1626
    • Asdrubali, F.1    Baldinelli, G.2
  • 9
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 2001, 5:373-401.
    • (2001) Renew Sustain Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 10
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Hernandez Neto A., Sanzovo Fiorelli F.A. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Buildings 2008, 40:2169-2176.
    • (2008) Energy Buildings , vol.40 , pp. 2169-2176
    • Hernandez Neto, A.1    Sanzovo Fiorelli, F.A.2
  • 11
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • Kalogirou S.A., Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 2000, 25:479-491.
    • (2000) Energy , vol.25 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 12
    • 0036469966 scopus 로고    scopus 로고
    • Modelling of the appliance, lighting and space-cooling energy consumption in the residential sector using neural networks
    • Aydinalp M., Ugursal V.I., Fung A.S. Modelling of the appliance, lighting and space-cooling energy consumption in the residential sector using neural networks. Appl Energy 2002, 71:87-110.
    • (2002) Appl Energy , vol.71 , pp. 87-110
    • Aydinalp, M.1    Ugursal, V.I.2    Fung, A.S.3
  • 13
    • 10444275587 scopus 로고    scopus 로고
    • Non-iterative estimation of heat transfer coefficients using artificial neural network models
    • Sablani S.S., Kacimov A., Perret J., Mujumdar A.S., Campo A. Non-iterative estimation of heat transfer coefficients using artificial neural network models. Int J Heat Mass Transfer 2005, 48:665-679.
    • (2005) Int J Heat Mass Transfer , vol.48 , pp. 665-679
    • Sablani, S.S.1    Kacimov, A.2    Perret, J.3    Mujumdar, A.S.4    Campo, A.5
  • 14
    • 64649084798 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks
    • Kurt H., Kayfeci M. Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks. Appl Energy 2009, 86:2244-2248.
    • (2009) Appl Energy , vol.86 , pp. 2244-2248
    • Kurt, H.1    Kayfeci, M.2
  • 15
    • 34447275969 scopus 로고    scopus 로고
    • A neural network evaluation model for individual thermal comfort
    • Liu W., Lian Z., Zhao B. A neural network evaluation model for individual thermal comfort. Energy Buildings 2007, 39:1115-1122.
    • (2007) Energy Buildings , vol.39 , pp. 1115-1122
    • Liu, W.1    Lian, Z.2    Zhao, B.3
  • 16
    • 80051818561 scopus 로고    scopus 로고
    • Optimization of window-openings design for thermal comfort in naturally ventilated buildings
    • Stavrakakis G.M., Zervas P.L., Sarimveis H., Markatos N.C. Optimization of window-openings design for thermal comfort in naturally ventilated buildings. Appl Math Model 2012, 36:193-211.
    • (2012) Appl Math Model , vol.36 , pp. 193-211
    • Stavrakakis, G.M.1    Zervas, P.L.2    Sarimveis, H.3    Markatos, N.C.4
  • 17
    • 84855279889 scopus 로고    scopus 로고
    • Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems - a review
    • Mohanraja M., Jayaraj S., Muraleedharanb C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems - a review. Renew Sustain Energy Rev 2012, 16:1340-1358.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 1340-1358
    • Mohanraja, M.1    Jayaraj, S.2    Muraleedharanb, C.3
  • 18
    • 33745594305 scopus 로고    scopus 로고
    • Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks
    • Yigit K.S., Ertunc H.M. Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks. Int Commun Heat Mass Transfer 2006, 33:898-907.
    • (2006) Int Commun Heat Mass Transfer , vol.33 , pp. 898-907
    • Yigit, K.S.1    Ertunc, H.M.2
  • 19
    • 4544286829 scopus 로고    scopus 로고
    • Performance comparison of CFCs with their substitutes using artificial neural network
    • Arcaklioglu E. Performance comparison of CFCs with their substitutes using artificial neural network. Intl J Energy Res 2004, 28:1113-1125.
    • (2004) Intl J Energy Res , vol.28 , pp. 1113-1125
    • Arcaklioglu, E.1
  • 20
    • 77649183955 scopus 로고    scopus 로고
    • Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area earth-to-air heat exchangers
    • Zhang J., Haghighat F. Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area earth-to-air heat exchangers. Energy Buildings 2010, 42:435-440.
    • (2010) Energy Buildings , vol.42 , pp. 435-440
    • Zhang, J.1    Haghighat, F.2
  • 21
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: a review
    • Mellit A., Kalogirou S.A. Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Comb Sci 2008, 34:574-632.
    • (2008) Prog Energy Comb Sci , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 24
    • 0035480458 scopus 로고    scopus 로고
    • Thermal transmittance of multiple glazing: computational fluid dynamic prediction
    • Gan G. Thermal transmittance of multiple glazing: computational fluid dynamic prediction. App Therm Eng 2001, 21:1583-1592.
    • (2001) App Therm Eng , vol.21 , pp. 1583-1592
    • Gan, G.1
  • 25
    • 85021026712 scopus 로고    scopus 로고
    • Prestazioni termiche di infissi in legno: analisi numerica e risultati sperimentali
    • In: Proceedings of XXVIII Congresso UIT sulla Trasmissione del Calore, Brescia, Italy; [in Italian]
    • Mariani R, Moretti E, Barbanera M. Prestazioni termiche di infissi in legno: analisi numerica e risultati sperimentali. In: Proceedings of XXVIII Congresso UIT sulla Trasmissione del Calore, Brescia, Italy; 2010 [in Italian].
    • (2010)
    • Mariani, R.1    Moretti, E.2    Barbanera, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.