메뉴 건너뛰기




Volumn 26, Issue 1, 2014, Pages 113-126

Compressive sensing and adaptive direct sampling in hyperspectral imaging

Author keywords

Classification; Compressive sensing; Hyperspectral imaging; Image reconstruction; Sampling strategy

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPRESSED SENSING; COMPUTATIONAL COMPLEXITY; HYPERSPECTRAL IMAGING; IMAGE RECONSTRUCTION; RENDERING (COMPUTER GRAPHICS); SPECTROSCOPY;

EID: 84893976876     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2013.12.001     Document Type: Article
Times cited : (65)

References (51)
  • 1
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G.A. Shaw, and H.K. Burke Spectral imaging for remote sensing Linc. Lab. J. 14 1 2003 3 28
    • (2003) Linc. Lab. J. , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.K.2
  • 4
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • D. Haboudane Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture Remote Sens. Environ. 90 3 2004 337 352
    • (2004) Remote Sens. Environ. , vol.90 , Issue.3 , pp. 337-352
    • Haboudane, D.1
  • 6
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • S. Matteoli, M. Diani, and G. Corsini A tutorial overview of anomaly detection in hyperspectral images IEEE Aerosp. Electron. Syst. Mag. 25 7 2010 5 28
    • (2010) IEEE Aerosp. Electron. Syst. Mag. , vol.25 , Issue.7 , pp. 5-28
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 7
    • 37249068974 scopus 로고    scopus 로고
    • Vegetation mapping for landmine detection using long-wave hyperspectral imagery
    • A. Zare, J. Bolton, P. Gader, and M. Schatten Vegetation mapping for landmine detection using long-wave hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 46 1 2008 172 178
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.1 , pp. 172-178
    • Zare, A.1    Bolton, J.2    Gader, P.3    Schatten, M.4
  • 8
    • 77956064449 scopus 로고    scopus 로고
    • Applications of grid pattern matching to the detection of buried landmines
    • A. Thomas, and J. Cathcart Applications of grid pattern matching to the detection of buried landmines IEEE Trans. Geosci. Remote Sens. 48 9 2010 3465 3470
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3465-3470
    • Thomas, A.1    Cathcart, J.2
  • 9
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging - An emerging process analytical tool for food quality and safety control
    • A. Gowen, C. ODonnell, P. Cullen, G. Downey, and J. Frias Hyperspectral imaging - an emerging process analytical tool for food quality and safety control Trends Food Sci. Technol. 18 12 2007 590 598
    • (2007) Trends Food Sci. Technol. , vol.18 , Issue.12 , pp. 590-598
    • Gowen, A.1    Odonnell, C.2    Cullen, P.3    Downey, G.4    Frias, J.5
  • 11
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E.J. Candès, J.K. Romberg, and T. Tao Stable signal recovery from incomplete and inaccurate measurements Commun. Pure Appl. Math. 59 8 2006 1207 1223
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.K.2    Tao, T.3
  • 12
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. Donoho Compressed sensing IEEE Trans. Inf. Theory 52 4 2006 1289 1306
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 17
    • 84863127484 scopus 로고    scopus 로고
    • A compressive sensing and unmixing scheme for hyperspectral data processing
    • C. Li, T. Sun, K. Kelly, and Y. Zhang A compressive sensing and unmixing scheme for hyperspectral data processing IEEE Trans. Image Process. 21 3 2012 1200 1210
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.3 , pp. 1200-1210
    • Li, C.1    Sun, T.2    Kelly, K.3    Zhang, Y.4
  • 18
    • 35348961052 scopus 로고    scopus 로고
    • Single-shot compressive spectral imaging with a dual-disperser architecture
    • M.E. Gehm, R. John, D.J. Brady, R.M. Willett, and T.J. Schulz Single-shot compressive spectral imaging with a dual-disperser architecture Opt. Express 15 21 2007 14013 14027
    • (2007) Opt. Express , vol.15 , Issue.21 , pp. 14013-14027
    • Gehm, M.E.1    John, R.2    Brady, D.J.3    Willett, R.M.4    Schulz, T.J.5
  • 19
    • 47849083178 scopus 로고    scopus 로고
    • Single disperser design for coded aperture snapshot spectral imaging
    • A. Wagadarikar, R. John, R. Willett, and D. Brady Single disperser design for coded aperture snapshot spectral imaging Appl. Opt. 47 10 2008 B44 B51
    • (2008) Appl. Opt. , vol.47 , Issue.10
    • Wagadarikar, A.1    John, R.2    Willett, R.3    Brady, D.4
  • 21
    • 0017558676 scopus 로고
    • The Shannon sampling theorem: Its various extensions and applications: A tutorial review
    • A. Jerri The Shannon sampling theorem: Its various extensions and applications: A tutorial review Proc. IEEE 65 11 1977 1565 1596
    • (1977) Proc. IEEE , vol.65 , Issue.11 , pp. 1565-1596
    • Jerri, A.1
  • 22
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E.J. Candès, J. Romberg, and T. Tao Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inf. Theory 52 2 2006 489 509
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 23
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing [lecture notes]
    • R.G. Baraniuk Compressive sensing [lecture notes] IEEE Signal Process. Mag. 24 4 2007 118 121
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.G.1
  • 29
    • 34250679222 scopus 로고    scopus 로고
    • Jpeg2000: Image compression fundamentals, standards and practice
    • D.S. Taubman, and M.W. Marcellin Jpeg2000: Image compression fundamentals, standards and practice J. Electron. Imaging 11 2 2002 286 287
    • (2002) J. Electron. Imaging , vol.11 , Issue.2 , pp. 286-287
    • Taubman, D.S.1    Marcellin, M.W.2
  • 31
    • 85034300227 scopus 로고
    • An embedded hierarchical image coder using zerotrees of wavelet coefficients
    • DCC 93
    • J.M. Shapiro An embedded hierarchical image coder using zerotrees of wavelet coefficients Proc. Data Compression Conference DCC 93 1993 214 223
    • (1993) Proc. Data Compression Conference , pp. 214-223
    • Shapiro, J.M.1
  • 32
    • 0015475519 scopus 로고
    • Symmetric binary B-trees: Data structure and maintenance algorithms
    • R. Bayer Symmetric binary B-trees: Data structure and maintenance algorithms Acta Inform. 1 1972 290 306
    • (1972) Acta Inform. , vol.1 , pp. 290-306
    • Bayer, R.1
  • 36
    • 84875587752 scopus 로고    scopus 로고
    • [Online], available at (original files) and ftp://ftp.ecn.purdue.edu/ biehl/PCMultiSpec/ThyFiles.zip (ground truth)
    • AVIRIS NW Indianas Indian Pines 1992 data set [Online], available at ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.lan (original files) and ftp://ftp.ecn.purdue.edu/biehl/PCMultiSpec/ThyFiles.zip (ground truth)
    • AVIRIS NW Indianas Indian Pines 1992 Data Set
  • 37
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • S. Tadjudin, and D.A. Landgrebe Covariance estimation with limited training samples IEEE Trans. Geosci. Remote Sens. 37 4 1999 2113 2118
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 40
  • 41
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • version 1.05 available from
    • J. Sturm Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones Optim. Methods Softw. 11-12 1999 625 653 version 1.05 available from http://fewcal.kub.nl/sturm
    • (1999) Optim. Methods Softw. , vol.11-12 , pp. 625-653
    • Sturm, J.1
  • 43
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • software available at
    • C.-C. Chang, and C.-J. Lin LIBSVM: A library for support vector machines ACM Trans. Intell. Syst. Technol. 2 2011 27:1 27:27 software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 44
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani, and L. Bruzzone Classification of hyperspectral remote sensing images with support vector machines IEEE Trans. Geosci. Remote Sens. 42 8 2004 1778 1790
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 47
    • 84879317733 scopus 로고    scopus 로고
    • Resampling methods for quality assessment of classifier performance and optimal number of features
    • R. Fandos, C. Debes, and A.M. Zoubir Resampling methods for quality assessment of classifier performance and optimal number of features Signal Process. 93 11 2013 2956 2968
    • (2013) Signal Process. , vol.93 , Issue.11 , pp. 2956-2968
    • Fandos, R.1    Debes, C.2    Zoubir, A.M.3
  • 48
    • 80052874015 scopus 로고    scopus 로고
    • Target discrimination and classification in through-the-wall radar imaging
    • C. Debes, J. Hahn, A. Zoubir, and M. Amin Target discrimination and classification in through-the-wall radar imaging IEEE Trans. Signal Process. 59 10 2011 4664 4676
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.10 , pp. 4664-4676
    • Debes, C.1    Hahn, J.2    Zoubir, A.3    Amin, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.