메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 20-27

Training sparse SVM on the core sets of fitting-planes

Author keywords

Core set; Fitting plane; Sparsity; SVM

Indexed keywords


EID: 84893799172     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.04.046     Document Type: Article
Times cited : (12)

References (22)
  • 1
  • 2
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan R.-E., et al. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research 2005, 6:1889-1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1
  • 3
    • 84893730669 scopus 로고    scopus 로고
    • Making large scale SVM learning practical, Advances in Kernel Methods-Support Vector Learning
    • T. Joachims, Making large scale SVM learning practical, Advances in Kernel Methods-Support Vector Learning, 1998.
    • (1998)
    • Joachims, T.1
  • 4
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • in: Proceedings of 13th International Conference on Machine Learning
    • C.J.C. Burges, Simplified support vector decision rules, in: Proceedings of 13th International Conference on Machine Learning, 1996, p. 7.
    • (1996) , pp. 7
    • Burges, C.J.C.1
  • 5
    • 0001260194 scopus 로고    scopus 로고
    • Exact simplification of support vector solutions
    • Downs T., et al. Exact simplification of support vector solutions. Journal of Machine Learning Research 2002, 2:293-297.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 293-297
    • Downs, T.1
  • 6
    • 54349120854 scopus 로고    scopus 로고
    • Pruning support vector machines without altering performances
    • Liang X., et al. Pruning support vector machines without altering performances. IEEE Transactions on Neural Networks 2008, 19:1792-1803.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 1792-1803
    • Liang, X.1
  • 7
    • 84893738644 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning, Presented at the ICML
    • A. Smola, B. Schölkopf, Sparse greedy matrix approximation for machine learning, Presented at the ICML, 2000.
    • (2000)
    • Smola, A.1    Schölkopf, B.2
  • 8
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • in:Proceedings of ICML 2005: 22nd International Conference on Machine Learning, August 7
    • F.R. Bach, M.I. Jordan, Predictive low-rank decomposition for kernel methods, in:Proceedings of ICML 2005: 22nd International Conference on Machine Learning, August 7, 2005, pp. 33-40.
    • (2005) , pp. 33-40
    • Bach, F.R.1    Jordan, M.I.2
  • 11
    • 31844432832 scopus 로고    scopus 로고
    • Building sparse large margin classifiers
    • in: Proceedings of ICML 2005: 22nd International Conference on Machine Learning, August 7
    • M. Wu, et al., Building sparse large margin classifiers, in: Proceedings of ICML 2005: 22nd International Conference on Machine Learning, August 7, 2005, pp. 1001-1008.
    • (2005) , pp. 1001-1008
    • Wu, M.1
  • 12
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Keerthi S.S., et al. Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research 2006, 7:1493-1515.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1
  • 13
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel SVMs via cutting-plane training
    • Joachims T., Yu C.N.J. Sparse kernel SVMs via cutting-plane training. Machine Learning 2009, 76:179-193.
    • (2009) Machine Learning , vol.76 , pp. 179-193
    • Joachims, T.1    Yu, C.N.J.2
  • 14
    • 77953123124 scopus 로고    scopus 로고
    • Sparse approximation through boosting for learning large scale Kernel machines
    • Sun P., Yao X. Sparse approximation through boosting for learning large scale Kernel machines. IEEE Transactions on Neural Networks 2010, 21:883-894.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , pp. 883-894
    • Sun, P.1    Yao, X.2
  • 15
    • 80055055460 scopus 로고    scopus 로고
    • Building sparse twin support vector machine classifiers in primal space
    • Peng X.J. Building sparse twin support vector machine classifiers in primal space. Information Sciences 2011, 181:3967-3980.
    • (2011) Information Sciences , vol.181 , pp. 3967-3980
    • Peng, X.J.1
  • 17
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • Licheng J., et al. Fast sparse approximation for least squares support vector machine. IEEE Transactions on Neural Networks 2007, 18:685-697.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 685-697
    • Licheng, J.1
  • 18
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem, in: Proceedings of Computational Learning Theory
    • B. Scholkopf, et al., A generalized representer theorem, in: Proceedings of Computational Learning Theory, vol. 2111, 2001, pp. 416-426.
    • (2001) , vol.2111 , pp. 416-426
    • Scholkopf, B.1
  • 22
    • 34547989245 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls
    • in: Proceedings of 24th International Conference on Machine Learning, ICML 2007,
    • I.W. Tsang, A. Kocsor, et al. Simpler core vector machines with enclosing balls, in: Proceedings of 24th International Conference on Machine Learning, ICML 2007, vol. 227, 2007, pp. 911-918.
    • (2007) , vol.227 , pp. 911-918
    • Tsang, I.W.1    Kocsor, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.