-
2
-
-
0002477272
-
The product of projection operators
-
Halperin, I.: The product of projection operators. Acta Sci. Math. (Szeged) 23, 96-99 (1962).
-
(1962)
Acta Sci. Math. (Szeged)
, vol.23
, pp. 96-99
-
-
Halperin, I.1
-
3
-
-
0001336448
-
The method of successive projection for finding a common point of convex sets
-
Bregman, L.: The method of successive projection for finding a common point of convex sets. J. Sov. Math. 6, 688-692 (1965).
-
(1965)
J. Sov. Math.
, vol.6
, pp. 688-692
-
-
Bregman, L.1
-
4
-
-
0001448913
-
On the convergence of von Neumann's alternating projection algorithm for two sets
-
Bauschke, H., Borwein, J.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185-212 (1993).
-
(1993)
Set-Valued Anal.
, vol.1
, Issue.2
, pp. 185-212
-
-
Bauschke, H.1
Borwein, J.2
-
5
-
-
0002351732
-
The method of cyclic projections for closed convex sets in Hilbert space
-
Bauschke, H., Borwein, J., Lewis, A.: The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 204, 1-38 (1997).
-
(1997)
Contemp. Math.
, vol.204
, pp. 1-38
-
-
Bauschke, H.1
Borwein, J.2
Lewis, A.3
-
6
-
-
33646672554
-
A note on the von Neumann alternating projections algorithm
-
Kopecká, E., Reich, S.: A note on the von Neumann alternating projections algorithm. J. Nonlinear Convex Anal. 5(3), 379-386 (2004).
-
(2004)
J. Nonlinear Convex Anal.
, vol.5
, Issue.3
, pp. 379-386
-
-
Kopecká, E.1
Reich, S.2
-
7
-
-
84861794243
-
Another note on the von Neumann alternating projections algorithm
-
Kopecká, E., Reich, S.: Another note on the von Neumann alternating projections algorithm. J. Nonlinear Convex Anal. 11, 455-460 (2010).
-
(2010)
J. Nonlinear Convex Anal.
, vol.11
, pp. 455-460
-
-
Kopecká, E.1
Reich, S.2
-
8
-
-
84858272196
-
Convergence of non-periodic infinite products of orthogonal projections and nonexpansive operators in Hilbert space
-
Pustylnik, E., Reich, S., Zaslavski, A.: Convergence of non-periodic infinite products of orthogonal projections and nonexpansive operators in Hilbert space. J. Approx. Theory 164(5), 611-624 (2012).
-
(2012)
J. Approx. Theory
, vol.164
, Issue.5
, pp. 611-624
-
-
Pustylnik, E.1
Reich, S.2
Zaslavski, A.3
-
9
-
-
84967782959
-
On the numerical solution of heat conduction problems in two and three space variables
-
Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421-439 (1956).
-
(1956)
Trans. Am. Math. Soc.
, vol.82
, Issue.2
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.2
-
10
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964-979 (1979).
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, Issue.6
, pp. 964-979
-
-
Lions, P.1
Mercier, B.2
-
11
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
-
Bauschke, H., Combettes, P., Luke, D.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127(2), 178-192 (2004).
-
(2004)
J. Approx. Theory
, vol.127
, Issue.2
, pp. 178-192
-
-
Bauschke, H.1
Combettes, P.2
Luke, D.3
-
12
-
-
84948499836
-
An algorithm for restricted least squares regression
-
Dykstra, R.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837-842 (1983).
-
(1983)
J. Am. Stat. Assoc.
, vol.78
, Issue.384
, pp. 837-842
-
-
Dykstra, R.1
-
13
-
-
0002436271
-
A method for finding projections onto the intersection of convex sets in Hilbert spaces
-
Lecture Notes in Statistics, Berlin: Springer
-
Boyle, J., Dykstra, R.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference. Lecture Notes in Statistics, vol. 37, pp. 28-47. Springer, Berlin (1986).
-
(1986)
Advances in Order Restricted Statistical Inference
, vol.37
, pp. 28-47
-
-
Boyle, J.1
Dykstra, R.2
-
14
-
-
0037976260
-
Dykstra's alternating projection algorithm for two sets
-
Bauschke, H., Borwein, J.: Dykstra's alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418-443 (1994).
-
(1994)
J. Approx. Theory
, vol.79
, Issue.3
, pp. 418-443
-
-
Bauschke, H.1
Borwein, J.2
-
15
-
-
33748894867
-
Projection algorithms: results and open problems
-
Bauschke, H.: Projection algorithms: results and open problems. Stud. Comput. Math. 8, 11-22 (2001).
-
(2001)
Stud. Comput. Math.
, vol.8
, pp. 11-22
-
-
Bauschke, H.1
-
16
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke, H., Borwein, J.: On projection algorithms for solving convex feasibility problems. SIAM Rew. 38(3), 367-426 (1996).
-
(1996)
SIAM Rew.
, vol.38
, Issue.3
, pp. 367-426
-
-
Bauschke, H.1
Borwein, J.2
-
17
-
-
0001770096
-
The method of alternating orthogonal projections
-
Dordrecht: Kluwer Academic
-
Deutsch, F.: The method of alternating orthogonal projections. In: Approximation Theory, Spline Functions and Applications, pp. 105-121. Kluwer Academic, Dordrecht (1992).
-
(1992)
Approximation Theory, Spline Functions and Applications
, pp. 105-121
-
-
Deutsch, F.1
-
18
-
-
84893759848
-
-
Honours thesis, Univ. of Newcastle
-
Tam, M.: The method of alternating projections. http://docserver. carma. newcastle. edu. au/id/eprint/1463. Honours thesis, Univ. of Newcastle (2012).
-
(2012)
The method of alternating projections
-
-
Tam, M.1
-
20
-
-
84856863709
-
Maximum entropy and feasibility methods for convex and nonconvex inverse problems
-
Borwein, J.: Maximum entropy and feasibility methods for convex and nonconvex inverse problems. Optimization 61(1), 1-33 (2012).
-
(2012)
Optimization
, vol.61
, Issue.1
, pp. 1-33
-
-
Borwein, J.1
-
21
-
-
0038266150
-
Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization
-
Bauschke, H., Combettes, P., Luke, D.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334-1345 (2002).
-
(2002)
J. Opt. Soc. Am. A
, vol.19
, Issue.7
, pp. 1334-1345
-
-
Bauschke, H.1
Combettes, P.2
Luke, D.3
-
22
-
-
0041573292
-
Hybrid projection-reflection method for phase retrieval
-
Bauschke, H., Combettes, P., Luke, D.: Hybrid projection-reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025-1034 (2003).
-
(2003)
J. Opt. Soc. Am. A
, vol.20
, Issue.6
, pp. 1025-1034
-
-
Bauschke, H.1
Combettes, P.2
Luke, D.3
-
23
-
-
33846321547
-
Searching with iterated maps
-
Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418-423 (2007).
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, Issue.2
, pp. 418-423
-
-
Elser, V.1
Rankenburg, I.2
Thibault, P.3
-
24
-
-
54749141939
-
Divide and concur: a general approach to constraint satisfaction
-
036706
-
Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78(3), 036, 706 (2008).
-
(2008)
Phys. Rev. E
, vol.78
, Issue.3
-
-
Gravel, S.1
Elser, V.2
-
26
-
-
70349387487
-
Local linear convergence for alternating and averaged nonconvex projections
-
Lewis, A., Luke, D., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485-513 (2009).
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.4
, pp. 485-513
-
-
Lewis, A.1
Luke, D.2
Malick, J.3
-
27
-
-
84881222107
-
Restricted normal cones and the method of alternating projections
-
Bauschke, H., Luke, D., Phan, H., Wang, X.: Restricted normal cones and the method of alternating projections. Set-Valued Var. Anal. To appear (2013). http://arxiv. org/pdf/1205. 0318v1.
-
(2013)
Set-Valued Var. Anal
-
-
Bauschke, H.1
Luke, D.2
Phan, H.3
Wang, X.4
-
31
-
-
84887242302
-
Global convergence of a non-convex Douglas-Rachford iteration
-
doi:10.1007/s10898-012-9958-4
-
Aragón Artacho, F., Borwein, J.: Global convergence of a non-convex Douglas-Rachford iteration. J. Glob. Optim. (2012). doi: 10. 1007/s10898-012-9958-4.
-
(2012)
J. Glob. Optim.
-
-
Artacho, F.A.1
Borwein, J.2
-
33
-
-
84968513648
-
The asymptotic behavior of firmly nonexpansive mappings
-
Reich, S., Shafrir, I.: The asymptotic behavior of firmly nonexpansive mappings. Proc. Am. Math. Soc. 101(2), 246-250 (1987).
-
(1987)
Proc. Am. Math. Soc.
, vol.101
, Issue.2
, pp. 246-250
-
-
Reich, S.1
Shafrir, I.2
-
34
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators in Banach space
-
Bruck, R., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach space. Houst. J. Math. 4 (1977).
-
(1977)
Houst. J. Math.
, pp. 4
-
-
Bruck, R.1
Reich, S.2
-
35
-
-
84872911262
-
Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular
-
Bauschke, H., Martín-Márquez, V., Moffat, S., Wang, X.: Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular. Fixed Point Theory Appl. 2012(53), 1-11 (2012).
-
(2012)
Fixed Point Theory Appl.
, vol.2012
, Issue.53
, pp. 1-11
-
-
Bauschke, H.1
Martín-Márquez, V.2
Moffat, S.3
Wang, X.4
-
36
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591-597 (1967).
-
(1967)
Bull. Am. Math. Soc.
, vol.73
, Issue.4
, pp. 591-597
-
-
Opial, Z.1
-
37
-
-
33748313088
-
Iterated products of projections in Hilbert space
-
Netyanun, A., Solmon, D.: Iterated products of projections in Hilbert space. Am. Math. Mon. 113(7), 644-648 (2006).
-
(2006)
Am. Math. Mon.
, vol.113
, Issue.7
, pp. 644-648
-
-
Netyanun, A.1
Solmon, D.2
-
38
-
-
0002633798
-
Krasnoselski-Mann iterations in normed spaces
-
Borwein, J., Reich, S., Shafrir, I.: Krasnoselski-Mann iterations in normed spaces. Can. Math. Bull. 35(1), 21-28 (1992).
-
(1992)
Can. Math. Bull.
, vol.35
, Issue.1
, pp. 21-28
-
-
Borwein, J.1
Reich, S.2
Shafrir, I.3
-
39
-
-
84968503398
-
Proximity maps for convex sets
-
Cheney, W., Goldstein, A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448-450 (1959).
-
(1959)
Proc. Am. Math. Soc.
, vol.10
, Issue.3
, pp. 448-450
-
-
Cheney, W.1
Goldstein, A.2
-
40
-
-
0031118203
-
No free lunch theorems for optimization
-
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67-82 (1997).
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolpert, D.1
Macready, W.2
|