메뉴 건너뛰기




Volumn 49, Issue , 2011, Pages 93-109

The douglas-rachford algorithm in the absence of convexity

Author keywords

Dynamical system; Fixed point theory; Iteration; Non convex feasibility problem

Indexed keywords


EID: 84976477811     PISSN: 19316828     EISSN: 19316836     Source Type: Book Series    
DOI: 10.1007/978-1-4419-9569-8_6     Document Type: Chapter
Times cited : (68)

References (12)
  • 1
    • 34548434277 scopus 로고    scopus 로고
    • Šnyrychová: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions
    • Andres, J., Pastor, K., Šnyrychová: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions. J. Fixed Point Theory Appl. 2, 153-170 (2007)
    • (2007) J. Fixed Point Theory Appl , vol.2 , pp. 153-170
    • Andres, J.1    Pastor, K.2
  • 2
    • 38049055792 scopus 로고    scopus 로고
    • Full analogy of Sharkovskii’s theorem for lower semicontinuous maps
    • Andres, J., Fürst, T., Pastor, K.: Full analogy of Sharkovskii’s theorem for lower semicontinuous maps. J. Math. Anal. Appl. 340, 1132-1144 (2008)
    • (2008) J. Math. Anal. Appl , vol.340 , pp. 1132-1144
    • Andres, J.1    Fürst, T.2    Pastor, K.3
  • 3
    • 0030246542 scopus 로고    scopus 로고
    • On projection algorithms for solving convex feasibility problems
    • Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Review 38, 367-426 (1996)
    • (1996) SIAM Review , vol.38 , pp. 367-426
    • Bauschke, H.H.1    Borwein, J.M.2
  • 4
    • 0038266150 scopus 로고    scopus 로고
    • Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization
    • Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Amer. A 19, 1334-1345 (2002)
    • (2002) J. Opt. Soc. Amer. A , vol.19 , pp. 1334-1345
    • Bauschke, H.H.1    Combettes, P.L.2    Luke, D.R.3
  • 5
    • 2942687455 scopus 로고    scopus 로고
    • Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
    • Bauschke, H.H., Combettes, P.L., Luke, D.R..: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178-192 (2004)
    • (2004) J. Approx. Theory , vol.127 , pp. 178-192
    • Bauschke, H.H.1    Combettes, P.L.2    Luke, D.R.3
  • 6
    • 33745856582 scopus 로고    scopus 로고
    • A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space
    • Bauschke, H.H., Combettes, P.L., Luke, D.R.: A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space. J. Approx. Theory 141, 63-69 (2006)
    • (2006) J. Approx. Theory , vol.141 , pp. 63-69
    • Bauschke, H.H.1    Combettes, P.L.2    Luke, D.R.3
  • 7
    • 84967782959 scopus 로고
    • On the numerical solution of heat conduction problems in two or three space variables
    • Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc. 82, 421-439 (1956)
    • (1956) Trans. Amer. Math. Soc , vol.82 , pp. 421-439
    • Douglas, J.1    Rachford, H.H.2
  • 9
    • 54749141939 scopus 로고    scopus 로고
    • Divide and concur: A general approach constraint satisfaction
    • Gravel, S., Elser, V.: Divide and concur: A general approach constraint satisfaction. Phys. Rev. E 78 036706, pp. 5 (2008), http://link.aps.org/doi/10.1103/PhysRevE.78.036706
    • (2008) Phys. Rev. E , vol.78 , pp. 5
    • Gravel, S.1    Elser, V.2
  • 11
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators. SIAM
    • Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979)
    • (1979) J. Numer. Anal , vol.16 , pp. 964-979
    • Lions, P.-L.1    Mercier, B.2
  • 12
    • 84987937647 scopus 로고
    • Eclatement de contraintes en parallèle pour la miniminisation d’une forme quadratique
    • Springer
    • Pierra, G.: Eclatement de contraintes en parallèle pour la miniminisation d’une forme quadratique. Lecture Notes in Computer Science, Springer, 41 200-218 (1976)
    • (1976) Lecture Notes in Computer Science , vol.41 , pp. 200-218
    • Pierra, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.