-
1
-
-
34548434277
-
Šnyrychová: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions
-
Andres, J., Pastor, K., Šnyrychová: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions. J. Fixed Point Theory Appl. 2, 153-170 (2007)
-
(2007)
J. Fixed Point Theory Appl
, vol.2
, pp. 153-170
-
-
Andres, J.1
Pastor, K.2
-
2
-
-
38049055792
-
Full analogy of Sharkovskii’s theorem for lower semicontinuous maps
-
Andres, J., Fürst, T., Pastor, K.: Full analogy of Sharkovskii’s theorem for lower semicontinuous maps. J. Math. Anal. Appl. 340, 1132-1144 (2008)
-
(2008)
J. Math. Anal. Appl
, vol.340
, pp. 1132-1144
-
-
Andres, J.1
Fürst, T.2
Pastor, K.3
-
3
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Review 38, 367-426 (1996)
-
(1996)
SIAM Review
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
4
-
-
0038266150
-
Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization
-
Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Amer. A 19, 1334-1345 (2002)
-
(2002)
J. Opt. Soc. Amer. A
, vol.19
, pp. 1334-1345
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
5
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
-
Bauschke, H.H., Combettes, P.L., Luke, D.R..: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178-192 (2004)
-
(2004)
J. Approx. Theory
, vol.127
, pp. 178-192
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
6
-
-
33745856582
-
A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space
-
Bauschke, H.H., Combettes, P.L., Luke, D.R.: A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space. J. Approx. Theory 141, 63-69 (2006)
-
(2006)
J. Approx. Theory
, vol.141
, pp. 63-69
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
7
-
-
84967782959
-
On the numerical solution of heat conduction problems in two or three space variables
-
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc. 82, 421-439 (1956)
-
(1956)
Trans. Amer. Math. Soc
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
8
-
-
33846321547
-
Searching with iterated maps
-
Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proceedings of the National Academy of Sciences 104, 418-423 (2007)
-
(2007)
Proceedings of the National Academy of Sciences
, vol.104
, pp. 418-423
-
-
Elser, V.1
Rankenburg, I.2
Thibault, P.3
-
9
-
-
54749141939
-
Divide and concur: A general approach constraint satisfaction
-
Gravel, S., Elser, V.: Divide and concur: A general approach constraint satisfaction. Phys. Rev. E 78 036706, pp. 5 (2008), http://link.aps.org/doi/10.1103/PhysRevE.78.036706
-
(2008)
Phys. Rev. E
, vol.78
, pp. 5
-
-
Gravel, S.1
Elser, V.2
-
11
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators. SIAM
-
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979)
-
(1979)
J. Numer. Anal
, vol.16
, pp. 964-979
-
-
Lions, P.-L.1
Mercier, B.2
-
12
-
-
84987937647
-
Eclatement de contraintes en parallèle pour la miniminisation d’une forme quadratique
-
Springer
-
Pierra, G.: Eclatement de contraintes en parallèle pour la miniminisation d’une forme quadratique. Lecture Notes in Computer Science, Springer, 41 200-218 (1976)
-
(1976)
Lecture Notes in Computer Science
, vol.41
, pp. 200-218
-
-
Pierra, G.1
|