메뉴 건너뛰기




Volumn 22, Issue 2, 2014, Pages 65-73

Spatiotemporal organization of microbial cells by protein concentration gradients

Author keywords

Caulobacter crescentus; Cell size homeostasis; Division site placement; MipZ; Nucleoid; ParA; Plasmid P1; Plasmid segregation; Pom1

Indexed keywords

ADENOSINE TRIPHOSPHATASE; BACTERIAL PROTEIN; MIPZ PROTEIN; PARA PROTEIN; PARB PROTEIN; PARS PROTEIN; POM1 PROTEIN; PROTEIN SERINE THREONINE KINASE; UNCLASSIFIED DRUG;

EID: 84893700111     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2013.11.005     Document Type: Review
Times cited : (48)

References (90)
  • 1
    • 0014593403 scopus 로고
    • Positional information and the spatial pattern of cellular differentiation
    • Wolpert L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 1969, 25:1-47.
    • (1969) J. Theor. Biol. , vol.25 , pp. 1-47
    • Wolpert, L.1
  • 2
    • 77954746410 scopus 로고    scopus 로고
    • Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog
    • Dessaud E., et al. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol. 2010, 8:e1000382.
    • (2010) PLoS Biol. , vol.8
    • Dessaud, E.1
  • 3
    • 36749092279 scopus 로고    scopus 로고
    • Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism
    • Dessaud E., et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 2007, 450:717-720.
    • (2007) Nature , vol.450 , pp. 717-720
    • Dessaud, E.1
  • 4
    • 0023677769 scopus 로고
    • A gradient of bicoid protein in Drosophila embryos
    • Driever W., Nusslein-Volhard C. A gradient of bicoid protein in Drosophila embryos. Cell 1988, 54:83-93.
    • (1988) Cell , vol.54 , pp. 83-93
    • Driever, W.1    Nusslein-Volhard, C.2
  • 5
    • 34447104600 scopus 로고    scopus 로고
    • Stability and nuclear dynamics of the bicoid morphogen gradient
    • Gregor T., et al. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 2007, 130:141-152.
    • (2007) Cell , vol.130 , pp. 141-152
    • Gregor, T.1
  • 6
    • 0024380401 scopus 로고
    • The gradient morphogen bicoid is a concentration-dependent transcriptional activator
    • Struhl G., et al. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 1989, 57:1259-1273.
    • (1989) Cell , vol.57 , pp. 1259-1273
    • Struhl, G.1
  • 7
    • 70349453919 scopus 로고    scopus 로고
    • Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules
    • Yu S.R., et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 2009, 461:533-536.
    • (2009) Nature , vol.461 , pp. 533-536
    • Yu, S.R.1
  • 9
    • 33846593303 scopus 로고    scopus 로고
    • Kinetics of morphogen gradient formation
    • Kicheva A., et al. Kinetics of morphogen gradient formation. Science 2007, 315:521-525.
    • (2007) Science , vol.315 , pp. 521-525
    • Kicheva, A.1
  • 10
    • 77953095048 scopus 로고    scopus 로고
    • Control of Dpp morphogen signalling by a secreted feedback regulator
    • Vuilleumier R., et al. Control of Dpp morphogen signalling by a secreted feedback regulator. Nat. Cell Biol. 2010, 12:611-617.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 611-617
    • Vuilleumier, R.1
  • 11
    • 78650270952 scopus 로고    scopus 로고
    • Positional information and patterning revisited
    • Wolpert L. Positional information and patterning revisited. J. Theor. Biol. 2011, 269:359-365.
    • (2011) J. Theor. Biol. , vol.269 , pp. 359-365
    • Wolpert, L.1
  • 12
    • 8644231698 scopus 로고    scopus 로고
    • Visualization of the movement of single histidine kinase molecules in live Caulobacter cells
    • Deich J., et al. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15921-15926.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15921-15926
    • Deich, J.1
  • 13
    • 0032900409 scopus 로고    scopus 로고
    • Protein mobility in the cytoplasm of Escherichia coli
    • Elowitz M.B., et al. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 1999, 181:197-203.
    • (1999) J. Bacteriol. , vol.181 , pp. 197-203
    • Elowitz, M.B.1
  • 14
    • 33846998421 scopus 로고    scopus 로고
    • Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy
    • Meacci G., et al. Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Phys. Biol. 2006, 3:255-263.
    • (2006) Phys. Biol. , vol.3 , pp. 255-263
    • Meacci, G.1
  • 15
    • 84872263097 scopus 로고    scopus 로고
    • Physical constraints on the establishment of intracellular spatial gradients in bacteria
    • Tropini C., et al. Physical constraints on the establishment of intracellular spatial gradients in bacteria. BMC Biophys. 2012, 5:17.
    • (2012) BMC Biophys. , vol.5 , pp. 17
    • Tropini, C.1
  • 16
    • 0032864252 scopus 로고    scopus 로고
    • Spatial gradients of cellular phospho-proteins
    • Brown G.C., Kholodenko B.N. Spatial gradients of cellular phospho-proteins. FEBS Lett. 1999, 457:452-454.
    • (1999) FEBS Lett. , vol.457 , pp. 452-454
    • Brown, G.C.1    Kholodenko, B.N.2
  • 17
    • 61349161193 scopus 로고    scopus 로고
    • Model for protein concentration gradients in the cytoplasm
    • Lipkow K., Odde D.J. Model for protein concentration gradients in the cytoplasm. Cell. Mol. Bioeng. 2008, 1:84-92.
    • (2008) Cell. Mol. Bioeng. , vol.1 , pp. 84-92
    • Lipkow, K.1    Odde, D.J.2
  • 18
    • 1642322097 scopus 로고    scopus 로고
    • Stathmin-tubulin interaction gradients in motile and mitotic cells
    • Niethammer P., et al. Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 2004, 303:1862-1866.
    • (2004) Science , vol.303 , pp. 1862-1866
    • Niethammer, P.1
  • 19
    • 67349103338 scopus 로고    scopus 로고
    • Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle
    • Martin S.G., Berthelot-Grosjean M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 2009, 459:852-856.
    • (2009) Nature , vol.459 , pp. 852-856
    • Martin, S.G.1    Berthelot-Grosjean, M.2
  • 20
    • 67349257405 scopus 로고    scopus 로고
    • A spatial gradient coordinates cell size and mitotic entry in fission yeast
    • Moseley J.B., et al. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 2009, 459:857-860.
    • (2009) Nature , vol.459 , pp. 857-860
    • Moseley, J.B.1
  • 21
    • 80052951973 scopus 로고    scopus 로고
    • Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle
    • Griffin E.E., et al. Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 2011, 146:955-968.
    • (2011) Cell , vol.146 , pp. 955-968
    • Griffin, E.E.1
  • 23
    • 77957959732 scopus 로고    scopus 로고
    • Bacterial microcompartments
    • Kerfeld C.A., et al. Bacterial microcompartments. Annu. Rev. Microbiol. 2010, 64:391-408.
    • (2010) Annu. Rev. Microbiol. , vol.64 , pp. 391-408
    • Kerfeld, C.A.1
  • 24
    • 84873740594 scopus 로고    scopus 로고
    • The bacterial cytoskeleton: more than twisted filaments
    • Pilhofer M., Jensen G.J. The bacterial cytoskeleton: more than twisted filaments. Curr. Opin. Cell Biol. 2013, 25:125-133.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 125-133
    • Pilhofer, M.1    Jensen, G.J.2
  • 25
    • 70849086538 scopus 로고    scopus 로고
    • Why and how bacteria localize proteins
    • Shapiro L., et al. Why and how bacteria localize proteins. Science 2009, 326:1225-1228.
    • (2009) Science , vol.326 , pp. 1225-1228
    • Shapiro, L.1
  • 26
    • 73949145723 scopus 로고    scopus 로고
    • Compartmentalized function through cell differentiation in filamentous cyanobacteria
    • Flores E., Herrero A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 2010, 8:39-50.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 39-50
    • Flores, E.1    Herrero, A.2
  • 27
    • 0034995651 scopus 로고    scopus 로고
    • The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120
    • Callahan S.M., Buikema W.J. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol. Microbiol. 2001, 40:941-950.
    • (2001) Mol. Microbiol. , vol.40 , pp. 941-950
    • Callahan, S.M.1    Buikema, W.J.2
  • 28
    • 84879023943 scopus 로고    scopus 로고
    • Functional dissection and evidence for intercellular transfer of the heterocyst-differentiation PatS morphogen
    • Corrales-Guerrero L., et al. Functional dissection and evidence for intercellular transfer of the heterocyst-differentiation PatS morphogen. Mol. Microbiol. 2013, 88:1093-1105.
    • (2013) Mol. Microbiol. , vol.88 , pp. 1093-1105
    • Corrales-Guerrero, L.1
  • 29
    • 0032582692 scopus 로고    scopus 로고
    • Heterocyst pattern formation controlled by a diffusible peptide
    • Yoon H.S., Golden J.W. Heterocyst pattern formation controlled by a diffusible peptide. Science 1998, 282:935-938.
    • (1998) Science , vol.282 , pp. 935-938
    • Yoon, H.S.1    Golden, J.W.2
  • 30
    • 0035726105 scopus 로고    scopus 로고
    • The making of a gradient: IcsA (VirG) polarity in Shigella flexneri
    • Robbins J.R., et al. The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol. Microbiol. 2001, 41:861-872.
    • (2001) Mol. Microbiol. , vol.41 , pp. 861-872
    • Robbins, J.R.1
  • 31
    • 79551629682 scopus 로고    scopus 로고
    • Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium
    • Chen Y.E., et al. Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1052-1057.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1052-1057
    • Chen, Y.E.1
  • 32
    • 33745699284 scopus 로고    scopus 로고
    • MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter
    • Thanbichler M., Shapiro L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 2006, 126:147-162.
    • (2006) Cell , vol.126 , pp. 147-162
    • Thanbichler, M.1    Shapiro, L.2
  • 33
    • 84877631843 scopus 로고    scopus 로고
    • ParA-mediated plasmid partition driven by protein pattern self-organization
    • Hwang L.C., et al. ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J. 2013, 32:1238-1249.
    • (2013) EMBO J. , vol.32 , pp. 1238-1249
    • Hwang, L.C.1
  • 34
    • 84876063388 scopus 로고    scopus 로고
    • Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism
    • Vecchiarelli A.G., et al. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1390-E1397.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Vecchiarelli, A.G.1
  • 35
    • 0040839027 scopus 로고    scopus 로고
    • Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis
    • Bähler J., Pringle J.R. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev. 1998, 12:1356-1370.
    • (1998) Genes Dev. , vol.12 , pp. 1356-1370
    • Bähler, J.1    Pringle, J.R.2
  • 36
    • 33845467072 scopus 로고    scopus 로고
    • The cell-end factor Pom1p inhibits Mid1p in specification of the cell division plane in fission yeast
    • Padte N.N., et al. The cell-end factor Pom1p inhibits Mid1p in specification of the cell division plane in fission yeast. Curr. Biol. 2006, 16:2480-2487.
    • (2006) Curr. Biol. , vol.16 , pp. 2480-2487
    • Padte, N.N.1
  • 37
    • 33845691069 scopus 로고    scopus 로고
    • Pom1 kinase links division plane position to cell polarity by regulating Mid1p cortical distribution
    • Celton-Morizur S., et al. Pom1 kinase links division plane position to cell polarity by regulating Mid1p cortical distribution. J. Cell Sci. 2006, 119:4710-4718.
    • (2006) J. Cell Sci. , vol.119 , pp. 4710-4718
    • Celton-Morizur, S.1
  • 38
    • 79959647018 scopus 로고    scopus 로고
    • A phosphorylation cycle shapes gradients of the DYRK family kinase Pom1 at the plasma membrane
    • Hachet O., et al. A phosphorylation cycle shapes gradients of the DYRK family kinase Pom1 at the plasma membrane. Cell 2011, 145:1116-1128.
    • (2011) Cell , vol.145 , pp. 1116-1128
    • Hachet, O.1
  • 39
    • 36248984986 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth
    • Alvarez-Tabares I., et al. Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth. J. Cell Sci. 2007, 120:3589-3601.
    • (2007) J. Cell Sci. , vol.120 , pp. 3589-3601
    • Alvarez-Tabares, I.1
  • 40
    • 84861766037 scopus 로고    scopus 로고
    • How to build a robust intracellular concentration gradient
    • Howard M. How to build a robust intracellular concentration gradient. Trends Cell Biol. 2012, 22:311-317.
    • (2012) Trends Cell Biol. , vol.22 , pp. 311-317
    • Howard, M.1
  • 41
    • 84858284790 scopus 로고    scopus 로고
    • Noise reduction in the intracellular Pom1p gradient by a dynamic clustering mechanism
    • Saunders T.E., et al. Noise reduction in the intracellular Pom1p gradient by a dynamic clustering mechanism. Dev. Cell 2012, 22:558-572.
    • (2012) Dev. Cell , vol.22 , pp. 558-572
    • Saunders, T.E.1
  • 42
    • 77953724552 scopus 로고    scopus 로고
    • Pushing and pulling in prokaryotic DNA segregation
    • Gerdes K., et al. Pushing and pulling in prokaryotic DNA segregation. Cell 2010, 141:927-942.
    • (2010) Cell , vol.141 , pp. 927-942
    • Gerdes, K.1
  • 43
    • 0030901361 scopus 로고    scopus 로고
    • Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus
    • Mohl D.A., Gober J.W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 1997, 88:675-684.
    • (1997) Cell , vol.88 , pp. 675-684
    • Mohl, D.A.1    Gober, J.W.2
  • 44
    • 55749095037 scopus 로고    scopus 로고
    • Caulobacter requires a dedicated mechanism to initiate chromosome segregation
    • Toro E., et al. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15435-15440.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15435-15440
    • Toro, E.1
  • 45
    • 77955175864 scopus 로고    scopus 로고
    • A spindle-like apparatus guides bacterial chromosome segregation
    • Ptacin J.L., et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 2010, 12:791-798.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 791-798
    • Ptacin, J.L.1
  • 46
    • 77956801105 scopus 로고    scopus 로고
    • Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins
    • Schofield W.B., et al. Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J. 2010, 29:3068-3081.
    • (2010) EMBO J. , vol.29 , pp. 3068-3081
    • Schofield, W.B.1
  • 47
    • 78650078263 scopus 로고    scopus 로고
    • FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one
    • Erickson H.P., et al. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 2010, 74:504-528.
    • (2010) Microbiol. Mol. Biol. Rev. , vol.74 , pp. 504-528
    • Erickson, H.P.1
  • 48
    • 84860777141 scopus 로고    scopus 로고
    • Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ
    • Kiekebusch D., et al. Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol. Cell 2012, 46:245-259.
    • (2012) Mol. Cell , vol.46 , pp. 245-259
    • Kiekebusch, D.1
  • 49
    • 0942301205 scopus 로고    scopus 로고
    • Kinetics of plasmid segregation in Escherichia coli
    • Gordon S., et al. Kinetics of plasmid segregation in Escherichia coli. Mol. Microbiol. 2004, 51:461-469.
    • (2004) Mol. Microbiol. , vol.51 , pp. 461-469
    • Gordon, S.1
  • 50
    • 77749246076 scopus 로고    scopus 로고
    • P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation
    • Sengupta M., et al. P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J. Bacteriol. 2010, 192:1175-1183.
    • (2010) J. Bacteriol. , vol.192 , pp. 1175-1183
    • Sengupta, M.1
  • 51
    • 77957237616 scopus 로고    scopus 로고
    • ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition
    • Vecchiarelli A.G., et al. ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. Mol. Microbiol. 2010, 78:78-91.
    • (2010) Mol. Microbiol. , vol.78 , pp. 78-91
    • Vecchiarelli, A.G.1
  • 52
    • 84855867420 scopus 로고    scopus 로고
    • ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS
    • Havey J.C., et al. ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS. Nucleic Acids Res. 2012, 40:801-812.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 801-812
    • Havey, J.C.1
  • 53
    • 84879045680 scopus 로고    scopus 로고
    • Dissection of the ATPase active site of P1 ParA reveals multiple active forms essential for plasmid partition
    • Vecchiarelli A.G., et al. Dissection of the ATPase active site of P1 ParA reveals multiple active forms essential for plasmid partition. J. Biol. Chem. 2013, 288:17823-17831.
    • (2013) J. Biol. Chem. , vol.288 , pp. 17823-17831
    • Vecchiarelli, A.G.1
  • 54
    • 78649614755 scopus 로고    scopus 로고
    • Partitioning of P1 plasmids by gradual distribution of the ATPase ParA
    • Hatano T., Niki H. Partitioning of P1 plasmids by gradual distribution of the ATPase ParA. Mol. Microbiol. 2010, 78:1182-1198.
    • (2010) Mol. Microbiol. , vol.78 , pp. 1182-1198
    • Hatano, T.1    Niki, H.2
  • 55
    • 0033106245 scopus 로고    scopus 로고
    • P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities
    • Bouet J.Y., Funnell B.E. P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J. 1999, 18:1415-1424.
    • (1999) EMBO J. , vol.18 , pp. 1415-1424
    • Bouet, J.Y.1    Funnell, B.E.2
  • 56
    • 0026585678 scopus 로고
    • Biochemical activities of the ParA partition protein of the P1 plasmid
    • Davis M.A., et al. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 1992, 6:1141-1147.
    • (1992) Mol. Microbiol. , vol.6 , pp. 1141-1147
    • Davis, M.A.1
  • 57
    • 0029798284 scopus 로고    scopus 로고
    • The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells
    • Davis M.A., et al. The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol. Microbiol. 1996, 21:1029-1036.
    • (1996) Mol. Microbiol. , vol.21 , pp. 1029-1036
    • Davis, M.A.1
  • 58
    • 0035801498 scopus 로고    scopus 로고
    • Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis
    • Fung E., et al. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 2001, 20:4901-4911.
    • (2001) EMBO J. , vol.20 , pp. 4901-4911
    • Fung, E.1
  • 59
    • 17844403033 scopus 로고    scopus 로고
    • Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF
    • Barilla D., et al. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J. 2005, 24:1453-1464.
    • (2005) EMBO J. , vol.24 , pp. 1453-1464
    • Barilla, D.1
  • 60
    • 77949539470 scopus 로고    scopus 로고
    • ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA
    • Hui M.P., et al. ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4590-4595.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4590-4595
    • Hui, M.P.1
  • 61
    • 13444281991 scopus 로고    scopus 로고
    • Bacterial chromosome segregation: structure and DNA binding of the Soj dimer-a conserved biological switch
    • Leonard T.A., et al. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer-a conserved biological switch. EMBO J. 2005, 24:270-282.
    • (2005) EMBO J. , vol.24 , pp. 270-282
    • Leonard, T.A.1
  • 62
    • 46349097796 scopus 로고    scopus 로고
    • Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation
    • Pratto F., et al. Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res. 2008, 36:3676-3689.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3676-3689
    • Pratto, F.1
  • 63
    • 73349101910 scopus 로고    scopus 로고
    • Movement and equipositioning of plasmids by ParA filament disassembly
    • Ringgaard S., et al. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19369-19374.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19369-19374
    • Ringgaard, S.1
  • 64
    • 34249810957 scopus 로고    scopus 로고
    • Oscillating focus of SopA associated with filamentous structure guides partitioning of F plasmid
    • Hatano T., et al. Oscillating focus of SopA associated with filamentous structure guides partitioning of F plasmid. Mol. Microbiol. 2007, 64:1198-1213.
    • (2007) Mol. Microbiol. , vol.64 , pp. 1198-1213
    • Hatano, T.1
  • 65
    • 84874192725 scopus 로고    scopus 로고
    • Organization and segregation of bacterial chromosomes
    • Wang X., et al. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 2013, 14:191-203.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 191-203
    • Wang, X.1
  • 66
    • 77749264485 scopus 로고    scopus 로고
    • Spatially ordered dynamics of the bacterial carbon fixation machinery
    • Savage D.F., et al. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 2010, 327:1258-1261.
    • (2010) Science , vol.327 , pp. 1258-1261
    • Savage, D.F.1
  • 67
    • 84860166053 scopus 로고    scopus 로고
    • ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes
    • Roberts M.A., et al. ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6698-6703.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6698-6703
    • Roberts, M.A.1
  • 68
    • 78751682243 scopus 로고    scopus 로고
    • Precision of sensing cell length via concentration gradients
    • Tostevin F. Precision of sensing cell length via concentration gradients. Biophys. J. 2011, 100:294-303.
    • (2011) Biophys. J. , vol.100 , pp. 294-303
    • Tostevin, F.1
  • 69
    • 77649091127 scopus 로고    scopus 로고
    • Self-organization of intracellular gradients during mitosis
    • Fuller B.G. Self-organization of intracellular gradients during mitosis. Cell Div. 2010, 5:5.
    • (2010) Cell Div. , vol.5 , pp. 5
    • Fuller, B.G.1
  • 70
    • 84878137161 scopus 로고    scopus 로고
    • Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth
    • Fuchino K., et al. Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1889-E1897.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Fuchino, K.1
  • 71
    • 0016908233 scopus 로고
    • Intracellular protein degradation in mammalian and bacterial cells: Part 2
    • Goldberg A.L., St John A.C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu. Rev. Biochem. 1976, 45:747-803.
    • (1976) Annu. Rev. Biochem. , vol.45 , pp. 747-803
    • Goldberg, A.L.1    St John, A.C.2
  • 72
    • 0015240366 scopus 로고
    • Protein degradation in Escherichia coli. II. Strain differences in the degradation of protein and nucleic acid resulting from starvation
    • Nath K., Koch A.L. Protein degradation in Escherichia coli. II. Strain differences in the degradation of protein and nucleic acid resulting from starvation. J. Biol. Chem. 1971, 246:6956-6967.
    • (1971) J. Biol. Chem. , vol.246 , pp. 6956-6967
    • Nath, K.1    Koch, A.L.2
  • 73
    • 77954632586 scopus 로고    scopus 로고
    • Modelling the Bicoid gradient
    • Grimm O., et al. Modelling the Bicoid gradient. Development 2010, 137:2253-2264.
    • (2010) Development , vol.137 , pp. 2253-2264
    • Grimm, O.1
  • 74
    • 77249142298 scopus 로고    scopus 로고
    • Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli
    • Kumar M., et al. Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys. J. 2010, 98:552-559.
    • (2010) Biophys. J. , vol.98 , pp. 552-559
    • Kumar, M.1
  • 75
    • 0033596698 scopus 로고    scopus 로고
    • Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors
    • Mayover T.L., et al. Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors. Biochemistry 1999, 38:2259-2271.
    • (1999) Biochemistry , vol.38 , pp. 2259-2271
    • Mayover, T.L.1
  • 76
    • 84872272882 scopus 로고    scopus 로고
    • Polarity and cell fate asymmetry in Caulobacter crescentus
    • Tsokos C.G., Laub M.T. Polarity and cell fate asymmetry in Caulobacter crescentus. Curr. Opin. Microbiol. 2012, 15:744-750.
    • (2012) Curr. Opin. Microbiol. , vol.15 , pp. 744-750
    • Tsokos, C.G.1    Laub, M.T.2
  • 77
    • 0031940593 scopus 로고    scopus 로고
    • Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin
    • Quon K.C., et al. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:120-125.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 120-125
    • Quon, K.C.1
  • 78
    • 0034665002 scopus 로고    scopus 로고
    • Diffusion control of protein phosphorylation in signal transduction pathways
    • Kholodenko B.N., et al. Diffusion control of protein phosphorylation in signal transduction pathways. Biochem. J. 2000, 350(Pt 3):901-907.
    • (2000) Biochem. J. , vol.350 , Issue.PART 3 , pp. 901-907
    • Kholodenko, B.N.1
  • 79
    • 33645452992 scopus 로고    scopus 로고
    • Analysis of a RanGTP-regulated gradient in mitotic somatic cells
    • Kaláb P., et al. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 2006, 440:697-701.
    • (2006) Nature , vol.440 , pp. 697-701
    • Kaláb, P.1
  • 80
    • 0037192461 scopus 로고    scopus 로고
    • Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts
    • Kaláb P., et al. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 2002, 295:2452-2456.
    • (2002) Science , vol.295 , pp. 2452-2456
    • Kaláb, P.1
  • 81
    • 0036295212 scopus 로고    scopus 로고
    • Classification and evolution of P-loop GTPases and related ATPases
    • Leipe D.D., et al. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 2002, 317:41-72.
    • (2002) J. Mol. Biol. , vol.317 , pp. 41-72
    • Leipe, D.D.1
  • 82
    • 67349250817 scopus 로고    scopus 로고
    • It takes two to tango: regulation of G proteins by dimerization
    • Gasper R., et al. It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 2009, 10:423-429.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 423-429
    • Gasper, R.1
  • 83
    • 34548630230 scopus 로고    scopus 로고
    • Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring
    • Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 2007, 76:539-562.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 539-562
    • Lutkenhaus, J.1
  • 84
    • 0024977391 scopus 로고
    • A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli
    • de Boer P.A., et al. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 1989, 56:641-649.
    • (1989) Cell , vol.56 , pp. 641-649
    • de Boer, P.A.1
  • 85
    • 0033609139 scopus 로고    scopus 로고
    • Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli
    • Raskin D.M., de Boer P.A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:4971-4976.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 4971-4976
    • Raskin, D.M.1    de Boer, P.A.2
  • 86
    • 0037180562 scopus 로고    scopus 로고
    • Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts
    • Szeto T.H., et al. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15693-15698.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 15693-15698
    • Szeto, T.H.1
  • 87
    • 79952450528 scopus 로고    scopus 로고
    • Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC
    • Wu W., et al. Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Mol. Microbiol. 2011, 79:1515-1528.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1515-1528
    • Wu, W.1
  • 88
    • 0034964370 scopus 로고    scopus 로고
    • Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid
    • Hu Z., Lutkenhaus J. Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 2001, 7:1337-1343.
    • (2001) Mol. Cell , vol.7 , pp. 1337-1343
    • Hu, Z.1    Lutkenhaus, J.2
  • 89
    • 0037241005 scopus 로고    scopus 로고
    • A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum
    • Hu Z., Lutkenhaus J. A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol. Microbiol. 2003, 47:345-355.
    • (2003) Mol. Microbiol. , vol.47 , pp. 345-355
    • Hu, Z.1    Lutkenhaus, J.2
  • 90
    • 84868026951 scopus 로고    scopus 로고
    • Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria
    • Vecchiarelli A.G., et al. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 2012, 86:513-523.
    • (2012) Mol. Microbiol. , vol.86 , pp. 513-523
    • Vecchiarelli, A.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.