-
1
-
-
0029587551
-
Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest
-
Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993-1000.
-
(1995)
Cell
, vol.83
, pp. 993-1000
-
-
Quelle, D.E.1
Zindy, F.2
Ashmun, R.A.3
Sherr, C.J.4
-
2
-
-
0032493350
-
Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2
-
Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292-8297.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 8292-8297
-
-
Kamijo, T.1
Weber, J.D.2
Zambetti, G.3
Zindy, F.4
Roussel, M.F.5
Sherr, C.J.6
-
3
-
-
0033130010
-
Nucleolar Arf sequesters Mdm2 and activates p53
-
Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20-26.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 20-26
-
-
Weber, J.D.1
Taylor, L.J.2
Roussel, M.F.3
Sherr, C.J.4
Bar-Sagi, D.5
-
4
-
-
0032549704
-
The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53
-
Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713-723.
-
(1998)
Cell
, vol.92
, pp. 713-723
-
-
Pomerantz, J.1
Schreiber-Agus, N.2
Liegeois, N.J.3
Silverman, A.4
Alland, L.5
Chin, L.6
-
5
-
-
0032549711
-
ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways
-
Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725-734.
-
(1998)
Cell
, vol.92
, pp. 725-734
-
-
Zhang, Y.1
Xiong, Y.2
Yarbrough, W.G.3
-
6
-
-
33747819484
-
Divorcing ARF and p53: An unsettled case
-
Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663-673.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 663-673
-
-
Sherr, C.J.1
-
7
-
-
0037291204
-
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing
-
Sugimoto M, Kuo ML, Roussel MF, Sherr CJ. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003; 11: 415-424.
-
(2003)
Mol Cell
, vol.11
, pp. 415-424
-
-
Sugimoto, M.1
Kuo, M.L.2
Roussel, M.F.3
Sherr, C.J.4
-
8
-
-
1642499357
-
Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23
-
Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 985-996.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 985-996
-
-
Bertwistle, D.1
Sugimoto, M.2
Sherr, C.J.3
-
9
-
-
38549104216
-
A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function
-
Apicelli AJ, Maggi Jr. LB, Hirbe AC, Miceli AP, Olanich ME, Schulte-Winkeler CL et al. A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function. Mol Cell Biol 2008; 28: 1068-1080.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 1068-1080
-
-
Apicelli, A.J.1
Maggi Jr., L.B.2
Hirbe, A.C.3
Miceli, A.P.4
Olanich, M.E.5
Schulte-Winkeler, C.L.6
-
10
-
-
6344288701
-
ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway
-
Brady SN, Yu Y, Maggi Jr. LB, Weber JD. ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 2004; 24: 9327-9338.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9327-9338
-
-
Brady, S.N.1
Yu, Y.2
Maggi Jr., L.B.3
Weber, J.D.4
-
11
-
-
80155192723
-
RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis
-
Saporita AJ, Chang HC, Winkeler CL, Apicelli AJ, Kladney RD, Wang J et al. RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis. Cancer Res 2011; 71: 6708-6717.
-
(2011)
Cancer Res
, vol.71
, pp. 6708-6717
-
-
Saporita, A.J.1
Chang, H.C.2
Winkeler, C.L.3
Apicelli, A.J.4
Kladney, R.D.5
Wang, J.6
-
12
-
-
0034711308
-
Human RNase III is a 160-kDa protein involved in preribosomal RNA processing
-
Wu H, Xu H, Miraglia LJ, Crooke ST. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000; 275: 36957-36965.
-
(2000)
J Biol Chem
, vol.275
, pp. 36957-36965
-
-
Wu, H.1
Xu, H.2
Miraglia, L.J.3
Crooke, S.T.4
-
13
-
-
9144224451
-
Processing of primary microRNAs by the Microprocessor complex
-
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231-235.
-
(2004)
Nature
, vol.432
, pp. 231-235
-
-
Denli, A.M.1
Tops, B.B.2
Plasterk, R.H.3
Ketting, R.F.4
Hannon, G.J.5
-
14
-
-
33750370444
-
MicroRNA signatures in human cancers
-
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-866.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 857-866
-
-
Calin, G.A.1
Croce, C.M.2
-
15
-
-
0141843656
-
The nuclear RNase III Drosha initiates microRNA processing
-
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415-419.
-
(2003)
Nature
, vol.425
, pp. 415-419
-
-
Lee, Y.1
Ahn, C.2
Han, J.3
Choi, H.4
Kim, J.5
Yim, J.6
-
16
-
-
8144225486
-
MicroRNA genes are transcribed by RNA polymerase II
-
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004; 23: 4051-4060.
-
(2004)
Embo J
, vol.23
, pp. 4051-4060
-
-
Lee, Y.1
Kim, M.2
Han, J.3
Yeom, K.H.4
Lee, S.5
Baek, S.H.6
-
17
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235-240.
-
(2004)
Nature
, vol.432
, pp. 235-240
-
-
Gregory, R.I.1
Yan, K.P.2
Amuthan, G.3
Chendrimada, T.4
Doratotaj, B.5
Cooch, N.6
-
18
-
-
36048958883
-
Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins
-
Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N. Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007; 313: 4196-4207.
-
(2007)
Exp Cell Res
, vol.313
, pp. 4196-4207
-
-
Shiohama, A.1
Sasaki, T.2
Noda, S.3
Minoshima, S.4
Shimizu, N.5
-
19
-
-
10644234841
-
The Drosha-DGCR8 complex in primary microRNA processing
-
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016-3027.
-
(2004)
Genes Dev
, vol.18
, pp. 3016-3027
-
-
Han, J.1
Lee, Y.2
Yeom, K.H.3
Kim, Y.K.4
Jin, H.5
Kim, V.N.6
-
20
-
-
34247876168
-
DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs
-
Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604-611.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 604-611
-
-
Fukuda, T.1
Yamagata, K.2
Fujiyama, S.3
Matsumoto, T.4
Koshida, I.5
Yoshimura, K.6
-
21
-
-
33748928159
-
The diverse functions of microRNAs in animal development and disease
-
Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441-450.
-
(2006)
Dev Cell
, vol.11
, pp. 441-450
-
-
Kloosterman, W.P.1
Plasterk, R.H.2
-
22
-
-
58049213696
-
Dicer, Drosha, and outcomes in patients with ovarian cancer
-
Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641-2650.
-
(2008)
N Engl J Med
, vol.359
, pp. 2641-2650
-
-
Merritt, W.M.1
Lin, Y.G.2
Han, L.Y.3
Kamat, A.A.4
Spannuth, W.A.5
Schmandt, R.6
-
23
-
-
78049231803
-
MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma
-
Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010; 70: 7841-7850.
-
(2010)
Cancer Res
, vol.70
, pp. 7841-7850
-
-
Lin, R.J.1
Lin, Y.C.2
Chen, J.3
Kuo, H.H.4
Chen, Y.Y.5
Diccianni, M.B.6
-
24
-
-
77953220804
-
Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer
-
Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest 2010; 28: 649-653.
-
(2010)
Cancer Invest
, vol.28
, pp. 649-653
-
-
Sand, M.1
Gambichler, T.2
Skrygan, M.3
Sand, D.4
Scola, N.5
Altmeyer, P.6
-
25
-
-
33846258745
-
RNASEN regulates cell proliferation and affects survival in esophageal cancer patients
-
Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 2006; 12: 7322-7328.
-
(2006)
Clin Cancer Res
, vol.12
, pp. 7322-7328
-
-
Sugito, N.1
Ishiguro, H.2
Kuwabara, Y.3
Kimura, M.4
Mitsui, A.5
Kurehara, H.6
-
26
-
-
79959958736
-
Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles
-
Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011; 224: 496-507.
-
(2011)
J Pathol
, vol.224
, pp. 496-507
-
-
Muralidhar, B.1
Winder, D.2
Murray, M.3
Palmer, R.4
Barbosa-Morais, N.5
Saini, H.6
-
27
-
-
58149097010
-
Posttranscriptional crossregulation between Drosha and DGCR8
-
Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009; 136: 75-84.
-
(2009)
Cell
, vol.136
, pp. 75-84
-
-
Han, J.1
Pedersen, J.S.2
Kwon, S.C.3
Belair, C.D.4
Kim, Y.K.5
Yeom, K.H.6
-
28
-
-
77952650382
-
The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase i transcription factor TTF-I
-
Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J et al. The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell 2010; 38: 539-550.
-
(2010)
Mol Cell
, vol.38
, pp. 539-550
-
-
Lessard, F.1
Morin, F.2
Ivanchuk, S.3
Langlois, F.4
Stefanovsky, V.5
Rutka, J.6
-
29
-
-
7944226275
-
Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes
-
Ayrault O, Andrique L, Larsen CJ, Seite P. Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 2004; 23: 8097-8104.
-
(2004)
Oncogene
, vol.23
, pp. 8097-8104
-
-
Ayrault, O.1
Andrique, L.2
Larsen, C.J.3
Seite, P.4
-
30
-
-
0345276485
-
Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation
-
Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 1151-1164.
-
(2003)
Mol Cell
, vol.12
, pp. 1151-1164
-
-
Itahana, K.1
Bhat, K.P.2
Jin, A.3
Itahana, Y.4
Hawke, D.5
Kobayashi, R.6
-
31
-
-
77953168825
-
ARF suppresses tumor angiogenesis through translational control of VEGFA mRNA
-
Kawagishi H, Nakamura H, Maruyama M, Mizutani S, Sugimoto K, Takagi M et al. ARF suppresses tumor angiogenesis through translational control of VEGFA mRNA. Cancer Res 2010; 70: 4749-4758.
-
(2010)
Cancer Res
, vol.70
, pp. 4749-4758
-
-
Kawagishi, H.1
Nakamura, H.2
Maruyama, M.3
Mizutani, S.4
Sugimoto, K.5
Takagi, M.6
-
32
-
-
36849048778
-
Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression
-
Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007; 131: 1097-1108.
-
(2007)
Cell
, vol.131
, pp. 1097-1108
-
-
Diederichs, S.1
Haber, D.A.2
-
33
-
-
80053380735
-
Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism
-
Oskowitz AZ, Penfornis P, Tucker A, Prockop DJ, Pochampally R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int J Biochem Cell Biol 2011; 43: 1563-1572.
-
(2011)
Int J Biochem Cell Biol
, vol.43
, pp. 1563-1572
-
-
Oskowitz, A.Z.1
Penfornis, P.2
Tucker, A.3
Prockop, D.J.4
Pochampally, R.5
-
34
-
-
0032504784
-
P19ARF links the tumour suppressor p53 to Ras
-
Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125-126.
-
(1998)
Nature
, vol.395
, pp. 125-126
-
-
Palmero, I.1
Pantoja, C.2
Serrano, M.3
-
35
-
-
0030728468
-
Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF
-
Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649-659.
-
(1997)
Cell
, vol.91
, pp. 649-659
-
-
Kamijo, T.1
Zindy, F.2
Roussel, M.F.3
Quelle, D.E.4
Downing, J.R.5
Ashmun, R.A.6
-
36
-
-
57349115332
-
Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome
-
Maggi Jr. LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 2008; 28: 7050-7065.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 7050-7065
-
-
Maggi Jr., L.B.1
Kuchenruether, M.2
Dadey, D.Y.3
Schwope, R.M.4
Grisendi, S.5
Townsend, R.R.6
-
38
-
-
84856800924
-
Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint
-
Miceli AP, Saporita AJ, Weber JD. Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 2012; 32: 348-364.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 348-364
-
-
Miceli, A.P.1
Saporita, A.J.2
Weber, J.D.3
-
39
-
-
78650971234
-
Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation
-
Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 2010; 30: 77-86.
-
(2010)
Oncogene
, vol.30
, pp. 77-86
-
-
Olanich, M.E.1
Moss, B.L.2
Piwnica-Worms, D.3
Townsend, R.R.4
Weber, J.D.5
-
40
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
41
-
-
0033912841
-
Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5 8S RRNA processing and 60S ribosome biogenesis
-
Strezoska Z, Pestov DG, Lau LF. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 2000; 20: 5516-5528.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 5516-5528
-
-
Strezoska, Z.1
Pestov, D.G.2
Lau, L.F.3
|