메뉴 건너뛰기




Volumn , Issue , 2013, Pages 769-774

Genetic algorithm with different feature selection techniques for anomaly detectors generation

Author keywords

Anomaly detectors generation; feature selection; genetic algorithms

Indexed keywords

ANOMALY DETECTOR; DETECTION ACCURACY; DETECTION PERFORMANCE; DETERMINISTIC CROWDING; IMPROVE PERFORMANCE; INTRUSION DETECTION SYSTEMS; PRINCIPLE COMPONENTS ANALYSIS; SELECTION TECHNIQUES;

EID: 84892537944     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (62)

References (28)
  • 4
    • 57849130705 scopus 로고    scopus 로고
    • G marcia-fernandez, e vazquez, anomaly-based network intrusion detection: Techniques, systems and challenges
    • P Garcia-Teodorro, J Diaz-Verdejo, G Marcia-Fernandez, E Vazquez, Anomaly-based network intrusion detection: Techniques, systems and challenges, Computers and Security, Elsevier, 2009, Vol. 28(1-2), pp. 18-28.
    • (2009) Computers and Security, Elsevier , vol.28 , Issue.1-2 , pp. 18-28
    • Garcia-Teodorro, P.1    Diaz-Verdejo, J.2
  • 6
    • 0001977664 scopus 로고
    • Selection of relevant features in machine learning
    • P Langley, Selection of Relevant Features in Machine Learning, Defense Technical Information Center, 1994, pp. 140-144.
    • (1994) Defense Technical Information Center , pp. 140-144
    • Langley, P.1
  • 7
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • J Hua, WD Tembe, ER Dougherty, Performance of feature-selection methods in the classification of high-dimension data, Pattern Recognition, 2009, Vol. 42(3), pp. 409-424.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 9
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data-A fast correlation-based filter solution
    • L Yu and H Liu, Feature Selection for High-Dimensional Data-A Fast Correlation-Based Filter Solution, In Machine Learning-International Workshop Then Conference, 2003, Vol. 20(2), p. 856.
    • (2003) Machine Learning-International Workshop Then Conference , vol.20 , Issue.2 , pp. 856
    • Yu, L.1    Liu, H.2
  • 10
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • Springer New York
    • D W Aha and R L Bankert, A Comparative Evaluation of Sequential Feature Selection Algorithms, Learning from Data, 1996, pp. 199-206, Springer New York.
    • (1996) Learning from Data , pp. 199-206
    • Aha, D.W.1    Bankert, R.L.2
  • 11
    • 0038759361 scopus 로고    scopus 로고
    • Pattern analysis for machine olfaction: A review
    • R Gutierrez-Osuna, Pattern analysis for machine olfaction: a review, Sensors Journal, IEEE Vol. 2(3), 2002, pp. 189-202.
    • (2002) Sensors Journal, IEEE , vol.2 , Issue.3 , pp. 189-202
    • Gutierrez-Osuna, R.1
  • 12
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • Springer New York
    • DW Aha and RL Bankert, A comparative evaluation of sequential feature selection algorithms, In Learning from Data, 1996, pp. 199-206, Springer New York.
    • (1996) Learning from Data , pp. 199-206
    • Aha, D.W.1    Bankert, R.L.2
  • 13
    • 84892511494 scopus 로고    scopus 로고
    • Department of Computer Engineering Bilkent University, CS 551
    • S Aksoy, Feature Reduction and Selection, Department of Computer Engineering Bilkent University, 2008, CS 551.
    • (2008) Feature Reduction and Selection
    • Aksoy, S.1
  • 17
    • 34047159144 scopus 로고    scopus 로고
    • Information gain, correlation and support vector machines
    • Springer Berlin Heidelberg
    • D Roobaert, G Karakoulas, NV Chawla. Information gain, correlation and support vector machines. Feature Extraction, 2006, pp. 463-470, Springer Berlin Heidelberg.
    • (2006) Feature Extraction , pp. 463-470
    • Roobaert, D.1    Karakoulas, G.2    Chawla, N.V.3
  • 22
    • 33751017631 scopus 로고    scopus 로고
    • Immune system approaches to intrusion detection-A review
    • Springer Berlin Heidelberg
    • U Aickelin, J Greensmith, J Twycross, Immune system approaches to intrusion detection-a review, In Artificial Immune Systems, Springer Berlin Heidelberg, 2004, pp. 316-329.
    • (2004) Artificial Immune Systems , pp. 316-329
    • Aickelin, U.1    Greensmith, J.2    Twycross, J.3
  • 23
  • 24
    • 84871857021 scopus 로고    scopus 로고
    • Artificial immune system inspired intrusion detection system using genetic algorithm
    • A S A Aziz, M A Salama, A E Hassanien, SE O Hanafi, Artificial Immune System Inspired Intrusion Detection System Using Genetic Algorithm. Informatica 36 (2012) 347-357
    • (2012) Informatica , vol.36 , pp. 347-357
    • Aziz, A.S.A.1    Salama, M.A.2    Hassanien, A.E.3    Hanafi, S.E.O.4
  • 26
    • 84892558744 scopus 로고    scopus 로고
    • NSL-KDD Intrusion Detection data set
    • NSL-KDD Intrusion Detection data set, Available on: http://iscx.ca/NSL- KDD/, March 2009.
  • 27
    • 84892522125 scopus 로고    scopus 로고
    • KDD Cup99 Intrusion Detection data set
    • KDD Cup99 Intrusion Detection data set, Available on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, October 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.