메뉴 건너뛰기




Volumn 28, Issue 2, 2014, Pages 553-565

A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data

Author keywords

Anfis; ARIMA; Streamflow modeling; Wavelet

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS; ARIMA; AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODELS; COMPUTER AIDED METHODS; ROOT MEAN SQUARED ERRORS; STREAMFLOW MODELING; WAVELET;

EID: 84892482238     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0502-1     Document Type: Article
Times cited : (46)

References (28)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390: 85-91.
    • (2010) J Hydrol , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction
    • Chang FJ, Chen YC (2001) A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. J Hydrol 245: 153-164.
    • (2001) J Hydrol , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 4
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang LC, Chang FJ, Chiang YM (2004) A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrol Process 18(1): 81-92.
    • (2004) Hydrol Process , vol.18 , Issue.1 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 5
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen SH, Lin YH, Chang LC, Chang FJ (2006) The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol Process 20: 1525-1540.
    • (2006) Hydrol Process , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 6
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby RL (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci 43(1): 47-67.
    • (1998) Hydrol Sci , vol.43 , Issue.1 , pp. 47-67
    • Dawson, C.W.1    Wilby, R.L.2
  • 9
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam. Water Resour Manag 21(3): 533-556.
    • (2007) Water Resour Manag , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 10
    • 0842334546 scopus 로고    scopus 로고
    • A neural network approach to real-time rainfall estimation for Africa using satellite data
    • Grimes DIF, Coppola E, Verdecchia M, Visconti G (2003) A neural network approach to real-time rainfall estimation for Africa using satellite data. J Hydrometeorol 4: 1119-1133.
    • (2003) J Hydrometeorol , vol.4 , pp. 1119-1133
    • Grimes, D.I.F.1    Coppola, E.2    Verdecchia, M.3    Visconti, G.4
  • 11
    • 0036579528 scopus 로고    scopus 로고
    • Reservoir operation using the neural network and fuzzy systems for dam control and operation support
    • Hasebe M, Nagayama Y (2002) Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Adv Eng Softw 33(5): 245-260.
    • (2002) Adv Eng Softw , vol.33 , Issue.5 , pp. 245-260
    • Hasebe, M.1    Nagayama, Y.2
  • 13
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cyberm 23(3): 665-685.
    • (1993) IEEE Trans Syst Man Cyberm , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 15
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi O (2009) Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J Hydrol Eng ASCE 14(8): 773-782.
    • (2009) J Hydrol Eng ASCE , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 16
    • 77955049922 scopus 로고    scopus 로고
    • Wavelet regression model for short-term streamflow forecasting
    • Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389: 344-353.
    • (2010) J Hydrol , vol.389 , pp. 344-353
    • Kisi, O.1
  • 17
    • 80053449485 scopus 로고    scopus 로고
    • Precipitation forecasting using wavelet genetic programming and wavelet-neuro-fuzzy conjunction models
    • Kisi O, Shiri J (2011) Precipitation forecasting using wavelet genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manag 25(13): 3135-3152.
    • (2011) Water Resour Manag , vol.25 , Issue.13 , pp. 3135-3152
    • Kisi, O.1    Shiri, J.2
  • 18
    • 33845872549 scopus 로고    scopus 로고
    • River suspended sediment modelling using a fuzzy logic approach
    • Kisi O, Karahan ME, Şen Z (2006) River suspended sediment modelling using a fuzzy logic approach. Hydrol Process 20: 4351-4362.
    • (2006) Hydrol Process , vol.20 , pp. 4351-4362
    • Kisi, O.1    Karahan, M.E.2    Şen, Z.3
  • 19
    • 33847740591 scopus 로고    scopus 로고
    • Assessment of rainfall-runoff models based upon wavelet analysis
    • Lane SN (2007) Assessment of rainfall-runoff models based upon wavelet analysis. Hydrol Process 21: 586-607.
    • (2007) Hydrol Process , vol.21 , pp. 586-607
    • Lane, S.N.1
  • 20
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227: 56-65.
    • (2000) J Hydrol , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 21
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7): 674-693.
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 22
    • 84865525837 scopus 로고    scopus 로고
    • A practical guide to discrete wavelet decomposition of hydrological time series
    • Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrological time series. Water Resour Manag 26(11): 3345-3365.
    • (2012) Water Resour Manag , vol.26 , Issue.11 , pp. 3345-3365
    • Sang, Y.F.1
  • 23
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26(6): 1715-1729.
    • (2012) Water Resour Manag , vol.26 , Issue.6 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 24
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri J, Kisi O (2010) Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J Hydrol 394: 486-493.
    • (2010) J Hydrol , vol.394 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 25
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith LC, Turcotte DL, Isacks B (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12: 233-249.
    • (1998) Hydrol Process , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.3
  • 26
    • 61849175296 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods
    • Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22: 4106-4129.
    • (2008) Hydrol Process , vol.22 , pp. 4106-4129
    • Toprak, Z.F.1    Cigizoglu, H.K.2
  • 27
    • 84855462883 scopus 로고    scopus 로고
    • Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach
    • Wei S, Song J, Khan NI (2012) Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol Process 26: 281-296.
    • (2012) Hydrol Process , vol.26 , pp. 281-296
    • Wei, S.1    Song, J.2    Khan, N.I.3
  • 28
    • 58849094959 scopus 로고    scopus 로고
    • Modelling level changes in lakes using neuro-fuzzy and artificial neural networks
    • Yarar A, Onucyi{dotless}ldi{dotless}z M, Copty NK (2009) Modelling level changes in lakes using neuro-fuzzy and artificial neural networks. J Hydrol 365: 329-334.
    • (2009) J Hydrol , vol.365 , pp. 329-334
    • Yarar, A.1    Onucyildiz, M.2    Copty, N.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.