메뉴 건너뛰기




Volumn 8, Issue 12, 2013, Pages

ReliefSeq: A gene-wise adaptive-k nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; SMALLPOX VACCINE;

EID: 84892376889     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0081527     Document Type: Article
Times cited : (32)

References (35)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 2
    • 84863453861 scopus 로고    scopus 로고
    • Technical and biological variance structure in mRNA-Seq data: Life in the real world
    • Oberg AL, Bot BM, Grill DE, Poland GA, Therneau TM (2012) Technical and biological variance structure in mRNA-Seq data: life in the real world. BMC genomics 13: 304.
    • (2012) BMC Genomics , vol.13 , pp. 304
    • Oberg, A.L.1    Bot, B.M.2    Grill, D.E.3    Poland, G.A.4    Therneau, T.M.5
  • 3
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 4
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 5
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, Tibshirani R (2011) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13: 523-538.
    • (2011) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 6
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNAseq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z (2012) Removing technical variability in RNAseq data using conditional quantile normalization. Biostatistics 13: 204-216.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 7
    • 33746525415 scopus 로고    scopus 로고
    • Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways
    • Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature genetics 38: 896-903.
    • (2006) Nature Genetics , vol.38 , pp. 896-903
    • Lehner, B.1    Crombie, C.2    Tischler, J.3    Fortunato, A.4    Fraser, A.G.5
  • 8
    • 54949120965 scopus 로고    scopus 로고
    • Control of canalization and evolvability by Hsp90
    • Milton CC, Ulane CM, Rutherford S (2006) Control of canalization and evolvability by Hsp90. PloS one 1: e75.
    • (2006) PloS One , vol.1
    • Milton, C.C.1    Ulane, C.M.2    Rutherford, S.3
  • 9
    • 25144508573 scopus 로고    scopus 로고
    • The evolutionary genetics of canalization
    • Flatt T (2005) The evolutionary genetics of canalization. The Quarterly review of biology 80: 287-316.
    • (2005) The Quarterly Review of Biology , vol.80 , pp. 287-316
    • Flatt, T.1
  • 11
    • 84879796432 scopus 로고    scopus 로고
    • Epigenetic epistatic interactions constrain the evolution of gene expression
    • Park S, Lehner B (2013) Epigenetic epistatic interactions constrain the evolution of gene expression. Molecular systems biology 9: 645.
    • (2013) Molecular Systems Biology , vol.9 , pp. 645
    • Park, S.1    Lehner, B.2
  • 12
    • 77953913791 scopus 로고    scopus 로고
    • From 'differential expression' to 'differential networking' - Identification of dysfunctional regulatory networks in diseases
    • de la Fuente A (2010) From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases. Trends in genetics: TIG 26: 326-333.
    • (2010) Trends in Genetics: TIG , vol.26 , pp. 326-333
    • De La Fuente, A.1
  • 13
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of Relief
    • Springer Verlag L. De Raedt and F. Bergadano (eds.)
    • Kononenko I (1994) Estimating attributes: analysis and extensions of Relief. Springer Verlag L. De Raedt and F. Bergadano (eds.): Machine Learning: ECML-94: 171-182.
    • (1994) Machine Learning: ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 15
    • 63449100294 scopus 로고    scopus 로고
    • Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis
    • McKinney BA, Crowe JE, Guo J, Tian D (2009) Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis. PLoS Genet 5: e1000432.
    • (2009) PLoS Genet , vol.5
    • McKinney, B.A.1    Crowe, J.E.2    Guo, J.3    Tian, D.4
  • 16
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF
    • Kononenko I, Simec E, Robnik-Sikoja M (1997) Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Applied Intellegence 7: 39-55.
    • (1997) Applied Intellegence , vol.7 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik-Sikoja, M.3
  • 17
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and Empirical Analysis of ReliefF and RReliefF
    • Robnik-Sikoja M, Kononenko I (2003) Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning 53: 23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikoja, M.1    Kononenko, I.2
  • 18
    • 69449088874 scopus 로고    scopus 로고
    • Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions
    • Greene CS, Penrod NM, Kiralis J, Moore JH (2009) Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min 2: 5.
    • (2009) BioData Min , vol.2 , pp. 5
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3    Moore, J.H.4
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L (2001) Random Forests. Machine Learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 20
    • 78649701338 scopus 로고    scopus 로고
    • Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine
    • Davis NA, Crowe JE Jr, Pajewski NM, McKinney BA (2010) Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine. Genes and immunity 11: 630-636.
    • (2010) Genes and Immunity , vol.11 , pp. 630-636
    • Davis, N.A.1    Crowe Jr., J.E.2    Pajewski, N.M.3    McKinney, B.A.4
  • 23
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research 40: 4288-4297.
    • (2012) Nucleic Acids Research , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 24
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 3
    • Smyth, G.K.1
  • 25
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A, Wiener MC (2002) Classification and Regression by randomForest. R News 2: 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.C.2
  • 26
  • 27
    • 85081812197 scopus 로고    scopus 로고
    • Inflammatory and antigen presentation transcriptional signatures discriminate high from low responders to rubella vaccination
    • In press
    • Haralambieva IH, Oberg AL, Ovsyannikova IG, Kennedy RB, Grill DE, et al. (2013) Inflammatory and antigen presentation transcriptional signatures discriminate high from low responders to rubella vaccination. PLoS One In press.
    • (2013) PLoS One
    • Haralambieva, I.H.1    Oberg, A.L.2    Ovsyannikova, I.G.3    Kennedy, R.B.4    Grill, D.E.5
  • 29
    • 57849085182 scopus 로고    scopus 로고
    • Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
    • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, et al. (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature immunology 10: 116-125.
    • (2009) Nature Immunology , vol.10 , pp. 116-125
    • Querec, T.D.1    Akondy, R.S.2    Lee, E.K.3    Cao, W.4    Nakaya, H.I.5
  • 32
    • 84866081004 scopus 로고    scopus 로고
    • Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder
    • Pandey A, Davis NA, White BC, Pajewski NM, Savitz J, et al. (2012) Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder. Translational Psychiatry 2: e154.
    • (2012) Translational Psychiatry , vol.2
    • Pandey, A.1    Davis, N.A.2    White, B.C.3    Pajewski, N.M.4    Savitz, J.5
  • 33
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107: 9546-9551.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 34
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99: 147-157.
    • (2007) J Natl Cancer Inst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 35
    • 84881616745 scopus 로고    scopus 로고
    • Encore: Genetic Association Interaction Network Centrality Pipeline and Application to SLE Exome Data
    • Davis NA, Lareau CA, White BC, Pandey A, Wiley G, et al. (2013) Encore: Genetic Association Interaction Network Centrality Pipeline and Application to SLE Exome Data. Genet Epidemiol.
    • (2013) Genet Epidemiol
    • Davis, N.A.1    Lareau, C.A.2    White, B.C.3    Pandey, A.4    Wiley, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.