메뉴 건너뛰기




Volumn 28, Issue 1, 2014, Pages 31-64

Hierarchical co-clustering: Off-line and incremental approaches

Author keywords

Co clustering; Hierarchical clustering; Incremental clustering

Indexed keywords

HIERARCHICAL CLUSTERING;

EID: 84891865606     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0292-8     Document Type: Article
Times cited : (21)

References (35)
  • 4
    • 70349331234 scopus 로고    scopus 로고
    • Propagation-vectors for trees (PVT): Concise yet effective summaries for hierarchical data and trees
    • ACM Press, Napa Valley
    • Cherukuri VS, Candan K (2008) Propagation-vectors for trees (PVT): concise yet effective summaries for hierarchical data and trees. In: Proceeding of LSDS-IR 2008. ACM Press, Napa Valley, pp 3-10
    • (2008) Proceeding of LSDS-IR 2008 , pp. 3-10
    • Cherukuri, V.S.1    Candan, K.2
  • 5
    • 2942588999 scopus 로고    scopus 로고
    • Minimum sum-squared residue co-clustering of gene expression data
    • Lake Buena Vista, USA
    • Cho H, Dhillon IS, Guan Y, Sra S (2004) Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of SIAM SDM 2004, Lake Buena Vista, USA
    • (2004) Proceedings of SIAM SDM 2004
    • Cho, H.1    Dhillon, I.S.2    Guan, Y.3    Sra, S.4
  • 6
    • 56749179351 scopus 로고    scopus 로고
    • A hierarchical model-based approach to co-clustering high-dimensional data
    • ACM Press, Fortaleza
    • Costa G, Manco G, Ortale R (2008) A hierarchical model-based approach to co-clustering high-dimensional data. In: Proceedings of ACM SAC 2008. ACM Press, Fortaleza, pp 886-890
    • (2008) Proceedings of ACM SAC 2008 , pp. 886-890
    • Costa, G.1    Manco, G.2    Ortale, R.3
  • 7
    • 78049323817 scopus 로고    scopus 로고
    • SCOAL: A framework for simultaneous co-clustering and learning from complex data
    • Deodhar M, Ghosh J (2010) SCOAL: a framework for simultaneous co-clustering and learning from complex data. Trans Knowl Discov Data 4(3): 11:1-11:31
    • (2010) Trans Knowl Discov Data , vol.4 , Issue.3 , pp. 111-1131
    • Deodhar, M.1    Ghosh, J.2
  • 9
    • 0001899154 scopus 로고    scopus 로고
    • Incremental clustering for mining in a data warehousing environment
    • Morgan Kaufmann, New York
    • Ester M, Kriegel HP, Sander J, Wimmer M, Xu X (1998) Incremental clustering for mining in a data warehousing environment. In: Proceedings of VLDB 1998. Morgan Kaufmann, New York, pp 323-333
    • (1998) Proceedings of VLDB 1998 , pp. 323-333
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 10
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher D (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2): 139-172
    • (1987) Mach Learn , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.1
  • 11
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • 1102.68553
    • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3: 1289-1305
    • (2003) J Mach Learn Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 12
    • 34548591807 scopus 로고    scopus 로고
    • A scalable collaborative filtering framework based on co-clustering
    • DOI 10.1109/ICDM.2005.14, 1565742, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • George T, Merugu S (2005) A scalable collaborative filtering framework based on co-clustering. In: Proceedings of ICDM 2005. IEEE Computer Society, Houston, pp 625-628 (Pubitemid 47385756)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 625-628
    • George, T.1    Merugu, S.2
  • 13
    • 72449182691 scopus 로고    scopus 로고
    • Selecting hierarchical clustering cut points for web person-name disambiguation
    • ACM Press, Boston
    • Gong J, Oard D (2009) Selecting hierarchical clustering cut points for web person-name disambiguation. In: Proceedings of ACM SIGIR 2009. ACM Press, Boston, pp 778-779
    • (2009) Proceedings of ACM SIGIR 2009 , pp. 778-779
    • Gong, J.1    Oard, D.2
  • 14
    • 34248978779 scopus 로고
    • Measures of association for cross classification
    • 0056.12801
    • Goodman LA, Kruskal WH (1954) Measures of association for cross classification. J Am Stat Assoc 49: 732-764
    • (1954) J Am Stat Assoc , vol.49 , pp. 732-764
    • Goodman, L.A.1    Kruskal, W.H.2
  • 15
    • 0000051498 scopus 로고
    • Measure of association for cross classification II: Further discussion and references
    • 10.1080/01621459.1959.10501503 0095.13101
    • Goodman LA, Kruskal WH (1959) Measure of association for cross classification II: further discussion and references. J Am Stat Assoc 54: 123-163
    • (1959) J Am Stat Assoc , vol.54 , pp. 123-163
    • Goodman, L.A.1    Kruskal, W.H.2
  • 17
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • 10.1080/01621459.1972.10481214
    • Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337): 123-129
    • (1972) J Am Stat Assoc , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.A.1
  • 19
    • 38349077040 scopus 로고    scopus 로고
    • Hierarchical co-clustering for web queries and selected urls
    • Springer, Nancy
    • Hosseini M, Abolhassani H (2007) Hierarchical co-clustering for web queries and selected urls. In: Proceedings of WISE 2007, LNCS, vol 4831. Springer, Nancy, pp 653-662
    • (2007) Proceedings of WISE 2007, LNCS , vol.4831 , pp. 653-662
    • Hosseini, M.1    Abolhassani, H.2
  • 20
    • 0000008146 scopus 로고
    • Comparing partitions
    • 10.1007/BF01908075
    • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1): 193-218
    • (1985) J Classif , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 22
    • 84872416829 scopus 로고    scopus 로고
    • Parameter-less co-clustering for star-structured heterogeneous data
    • doi: 10.1007/s10618-012-0248-z
    • Ienco D, Robardet C, Pensa R, Meo R (2012) Parameter-less co-clustering for star-structured heterogeneous data. Data Min Knowl Discov. doi: 10.1007/s10618-012-0248-z
    • (2012) Data Min Knowl Discov.
    • Ienco, D.1    Robardet, C.2    Pensa, R.3    Meo, R.4
  • 23
    • 0037116765 scopus 로고    scopus 로고
    • Genetic local search for multi-objective combinatorial optimization
    • DOI 10.1016/S0377-2217(01)00104-7, PII S0377221701001047
    • Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137(1): 50-71 (Pubitemid 33127937)
    • (2002) European Journal of Operational Research , vol.137 , Issue.1 , pp. 50-71
    • Jaszkiewicz, A.1
  • 24
    • 78649979267 scopus 로고    scopus 로고
    • Incremental collaborative filtering via evolutionary co-clustering
    • ACM Press, Barcelona
    • Khoshneshin M, Street W (2010) Incremental collaborative filtering via evolutionary co-clustering. In: Proceedings of ACM RecSys 2010. ACM Press, Barcelona, pp 325-328
    • (2010) Proceedings of ACM RecSys 2010 , pp. 325-328
    • Khoshneshin, M.1    Street, W.2
  • 25
    • 34547627470 scopus 로고    scopus 로고
    • CP/CV: Concept similarity mining without frequency information from domain describing taxonomies
    • DOI 10.1145/1183614.1183684, Proceedings of the 15th ACM Conference on Information and Knowledge Management, CIKM 2006
    • Kim J, Candan K (2006) CP/CV: concept similarity mining without frequency information from domain describing taxonomies. In: Proceedings of ACM CIKM 2006. ACM Press, Arlington, pp 483-492 (Pubitemid 47203594)
    • (2006) International Conference on Information and Knowledge Management, Proceedings , pp. 483-492
    • Kim, J.W.1    Candan, K.S.2
  • 26
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • DOI 10.1101/gr.648603
    • Kluger Y, Basri R, Chang J, Gerstein M (2003) Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 13: 703-716 (Pubitemid 36511928)
    • (2003) Genome Research , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 27
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • 10.1145/1497577.1497578
    • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1): 1:1- 1:58
    • (2009) ACM Trans Knowl Discov Data , vol.3 , Issue.1 , pp. 11-158
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 28
    • 27144541535 scopus 로고    scopus 로고
    • A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices
    • DOI 10.1016/j.ejor.2004.08.024, PII S0377221704005739
    • Paquete L, Stützle T (2006) A study of stochastic local search algorithms for the biobjective qap with correlated flow matrices. Eur J Oper Res 169(3): 943-959 (Pubitemid 41508803)
    • (2006) European Journal of Operational Research , vol.169 , Issue.3 , pp. 943-959
    • Paquete, L.1    Stutzle, T.2
  • 30
    • 84891850704 scopus 로고    scopus 로고
    • Comparison of Three Objective Functions for Conceptual Clustering
    • Principles of Data Mining and Knowledge Discovery
    • Robardet C, Feschet F (2001a) Comparison of three objective functions for conceptual clustering. In: Proceedings of PKDD 2001, LNCS, vol 2168. Springer, Freiburg, pp 399-410 (Pubitemid 33331878)
    • (2001) Lecture Notes In Computer Science , Issue.2168 , pp. 399-410
    • Robardet, C.1    Feschet, F.2
  • 31
    • 84891857421 scopus 로고    scopus 로고
    • Efficient Local Search in Conceptual Clustering
    • Discovery Science
    • Robardet C, Feschet F (2001b) Efficient local search in conceptual clustering. In: Proceedings of DS 2001, LNCS, vol 2226. Springer, Washington, DC, pp 323-335 (Pubitemid 33371044)
    • (2001) Lecture Notes In Computer Science , Issue.2226 , pp. 323-335
    • Robardet, C.1    Feschet, F.2
  • 33
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • ACM Press, Athens
    • Slonim N, Tishby N (2000) Document clustering using word clusters via the information bottleneck method. In: Proceedings of ACM SIGIR 2000. ACM Press, Athens, pp 208-215
    • (2000) Proceedings of ACM SIGIR 2000 , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 34
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • 1991087
    • Strehl A, Ghosh J (2002) Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3: 583-617
    • (2002) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 35
    • 84876372695 scopus 로고    scopus 로고
    • Extending consensus clustering to explore multiple clustering views
    • Zhang Y, Li T (2011) Extending consensus clustering to explore multiple clustering views. In: Proceedings of SIAM SDM 2011, pp 920-931
    • (2011) Proceedings of SIAM SDM 2011 , pp. 920-931
    • Zhang, Y.1    Li, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.