메뉴 건너뛰기




Volumn 48, Issue 1, 2014, Pages 114-133

On-line em variants for multivariate normal mixture model in background learning and moving foreground detection

Author keywords

Background learning; Fisher information matrix; Foreground detection; Maximum likelihood estimation; Multivariate normal mixture; Newton Raphson; On line EM algorithm

Indexed keywords

DATA STREAMS; E-LEARNING; FISHER INFORMATION MATRIX; ITERATIVE METHODS; MAXIMUM LIKELIHOOD ESTIMATION; MIXTURES; NEWTON-RAPHSON METHOD; NUMERICAL METHODS; REAL TIME SYSTEMS;

EID: 84891846576     PISSN: 09249907     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10851-012-0403-6     Document Type: Article
Times cited : (2)

References (26)
  • 3
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • 10.1207/s15327906mbr0503-6
    • Wolfe, J.H.: Pattern clustering by multivariate mixture analysis. Multivar. Behav. Res. 5, 329-350 (1970)
    • (1970) Multivar. Behav. Res. , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 4
    • 0001593436 scopus 로고
    • Recursive parameter estimation using incomplete data
    • 0556.62061 781884
    • Titterington, D.M.: Recursive parameter estimation using incomplete data. J. R. Stat. Soc., Ser. B, Methodol. 46(2), 257-267 (1984)
    • (1984) J. R. Stat. Soc., Ser. B, Methodol. , vol.46 , Issue.2 , pp. 257-267
    • Titterington, D.M.1
  • 5
    • 0000083279 scopus 로고
    • On asymptotically efficient recursive estimation
    • 10.1214/aos/1176344259 0378.62031 478506
    • Fabian, V.: On asymptotically efficient recursive estimation. Ann. Stat. 6, 854-866 (1978)
    • (1978) Ann. Stat. , vol.6 , pp. 854-866
    • Fabian, V.1
  • 6
    • 3042585857 scopus 로고    scopus 로고
    • Recursive unsupervised learning of finite mixture models
    • 10.1109/TPAMI.2004.1273970
    • Zivkovic, Z., van der Heijden, F.: Recursive unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 651-656 (2004)
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.5 , pp. 651-656
    • Zivkovic, Z.1    Van Der Heijden, F.2
  • 7
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan (eds) Kluwer Academic Dordrecht 10.1007/978-94-011-5014-9-12
    • Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355-368. Kluwer Academic, Dordrecht (1998)
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 8
    • 66849104300 scopus 로고    scopus 로고
    • On-line expectation-maximization algorithm for latent data models
    • 10.1111/j.1467-9868.2009.00698.x 1250.62015 2749909
    • Cappe, O., Moulines, E.: On-line expectation-maximization algorithm for latent data models. J. R. Stat. Soc., Ser. B, Methodol. 71, 593-613 (2009)
    • (2009) J. R. Stat. Soc., Ser. B, Methodol. , vol.71 , pp. 593-613
    • Cappe, O.1    Moulines, E.2
  • 9
    • 0038278839 scopus 로고    scopus 로고
    • Finite mixture distributions, sequential likelihood and the em algorithm
    • 10.1111/1468-0262.00431 1154.62360 1983232
    • Arcidiacono, P., Jones, J.B.: Finite mixture distributions, sequential likelihood and the EM algorithm. Econometrica 71(3), 933-946 (2003)
    • (2003) Econometrica , vol.71 , Issue.3 , pp. 933-946
    • Arcidiacono, P.1    Jones, J.B.2
  • 10
    • 2342533082 scopus 로고    scopus 로고
    • On Convergence Properties of the EM Algorithm for Gaussian Mixtures
    • Xu, L., Jordan, M.: On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput. 8, 129-151 (1996) (Pubitemid 126449919)
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 11
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the em algorithm
    • 10.1137/1026034 0536.62021 738930
    • Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm. SIAM Rev. 26, 195-239 (1984)
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 12
    • 0034131785 scopus 로고    scopus 로고
    • On-line em algorithm for the normalized Gaussian network
    • 10.1162/089976600300015853
    • Sato, M., Ishii, S.: On-line EM algorithm for the normalized Gaussian network. Neural Comput. 12, 407-432 (2000)
    • (2000) Neural Comput. , vol.12 , pp. 407-432
    • Sato, M.1    Ishii, S.2
  • 13
    • 0017553461 scopus 로고
    • A quasi-Bayes unsupervised learning procedure for priors
    • 10.1109/TIT.1977.1055801
    • Markov, U.E., Smith, A.F.M.: A quasi-Bayes unsupervised learning procedure for priors. IEEE Trans. Inf. Theory 23(6), 761-764 (1977)
    • (1977) IEEE Trans. Inf. Theory , vol.23 , Issue.6 , pp. 761-764
    • Markov, U.E.1    Smith, A.F.M.2
  • 15
    • 33749682432 scopus 로고    scopus 로고
    • Almost sure convergence of Titterington's recursive estimator for mixture models
    • DOI 10.1016/j.spl.2006.05.017, PII S0167715206001842
    • Wang, S., Zhao, Y.: Almost sure convergence of Titterington's recursive estimator for mixture models. Stat. Probab. Lett. 76, 2001-2006 (2006) (Pubitemid 44550695)
    • (2006) Statistics and Probability Letters , vol.76 , Issue.18 , pp. 2001-2006
    • Wang, S.1    Zhao, Y.2
  • 18
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • 10.1109/34.868677
    • Stauffer, C., Grimson, W.E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747-757 (2000)
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.E.2
  • 19
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive Gaussian mixture model for background subtraction
    • Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proc. 17th Int. Conf. Pattern Recognition, pp. 28-31 (2004)
    • (2004) Proc. 17th Int. Conf. Pattern Recognition , pp. 28-31
    • Zivkovic, Z.1
  • 20
    • 79952437140 scopus 로고    scopus 로고
    • On-line background learning for illumination-robust foreground detection
    • Li, D., Xu, L., Goodman, E.: On-line background learning for illumination-robust foreground detection. In: Proc. 11th ICARCV, pp. 1093-1100 (2010)
    • (2010) Proc. 11th ICARCV , pp. 1093-1100
    • Li, D.1    Xu, L.2    Goodman, E.3
  • 21
    • 84891845638 scopus 로고    scopus 로고
    • Available at: http://www.cvg.rdg.ac.uk/slides/pets.html
  • 23
    • 33646855413 scopus 로고    scopus 로고
    • Flexible background mixture models for foreground segmentation
    • DOI 10.1016/j.imavis.2006.01.018, PII S0262885606000473
    • Cheng, J., Yang, J., Zhou, Y., Cui, Y.: Flexible background mixture models for foreground segmentation. Image Vis. Comput. 24, 473-482 (2006) (Pubitemid 43782929)
    • (2006) Image and Vision Computing , vol.24 , Issue.5 , pp. 473-482
    • Cheng, J.1    Yang, J.2    Zhou, Y.3    Cui, Y.4
  • 24
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using codebook model
    • DOI 10.1016/j.rti.2004.12.004, PII S1077201405000057, Video Object Processing
    • Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 167-256 (2005) (Pubitemid 40929458)
    • (2005) Real-Time Imaging , vol.11 , Issue.3 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.H.2    Harwood, D.3    Davis, L.4
  • 25
    • 0742322178 scopus 로고    scopus 로고
    • A linear-time component-labeling algorithm using contour tracing technique
    • 10.1016/j.cviu.2003.09.002
    • Chang, F., Chen, C., Lu, C.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst. 93(2), 206-220 (2004)
    • (2004) Comput. Vis. Image Underst. , vol.93 , Issue.2 , pp. 206-220
    • Chang, F.1    Chen, C.2    Lu, C.3
  • 26
    • 36348968443 scopus 로고    scopus 로고
    • A multiple-hypothesis approach for multiobject visual tracking
    • DOI 10.1109/TIP.2007.906254
    • Joo, S., Chellappa, R.: A multiple-hypothesis approach for multiobject visual tracking. IEEE Trans. Image Process. 16(11), 2849-2854 (2007) (Pubitemid 350141857)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.11 , pp. 2849-2854
    • Joo, S.-W.1    Chellappa, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.