-
1
-
-
0012582658
-
Industrial applications of soft computing: A review
-
Dote Y, Ovaska SJ (2001) Industrial applications of soft computing: a review. Proc IEEE 89(9): 1243-1265.
-
(2001)
Proc IEEE
, vol.89
, Issue.9
, pp. 1243-1265
-
-
Dote, Y.1
Ovaska, S.J.2
-
2
-
-
0026692226
-
Stacked generalization
-
Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
-
(1992)
Neural Netw
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
3
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for hybrid neural networks. Neural Netw Speech Image Proc 126-142.
-
(1993)
Neural Netw Speech Image Proc
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
5
-
-
84865801454
-
Ensembles of learning machines
-
Lecture Notes in Computer Sciences. Springer, Berlin
-
Valentini G, Masulli F (2002) Ensembles of learning machines. In: 13th Italian workshop on neural nets, vol 2486, Lecture Notes in Computer Sciences. Springer, Berlin, pp 3-22.
-
(2002)
13th Italian Workshop on Neural Nets
, vol.2486
, pp. 3-22
-
-
Valentini, G.1
Masulli, F.2
-
6
-
-
85054435084
-
Neural network ensembles, cross validation and active learning
-
Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation and active learning. Adv Neural Inf Proc Syst (7): 231-238.
-
(1995)
Adv Neural Inf Proc Syst
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
7
-
-
0032021555
-
On combining classifiers
-
Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3): 226-239.
-
(1998)
IEEE Trans Pattern Anal Mach Intell
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
8
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1): 119-139.
-
(1997)
J Comput Syst Sci
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169-198.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
10
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E, Kohavi RON (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36: 105-139.
-
(1999)
Mach Learn
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.O.N.2
-
11
-
-
0005946314
-
An overview of classifier fusion methods
-
Ruta D, Gabrys B (2000) An overview of classifier fusion methods. Comput Inf Syst 7(1): 1-10.
-
(2000)
Comput Inf Syst
, vol.7
, Issue.1
, pp. 1-10
-
-
Ruta, D.1
Gabrys, B.2
-
12
-
-
10444224737
-
Classifier selection for majority voting
-
Ruta D, Gabrys B (2005) Classifier selection for majority voting. Inf Fusion 6(1): 63-81.
-
(2005)
Inf Fusion
, vol.6
, Issue.1
, pp. 63-81
-
-
Ruta, D.1
Gabrys, B.2
-
13
-
-
4344642807
-
Learning hybrid neuro-fuzzy classiffer models from data: To combine or not to combine
-
Gabrys B (2004) Learning hybrid neuro-fuzzy classiffer models from data: to combine or not to combine. Fuzzy Sets Syst 147: 39-56.
-
(2004)
Fuzzy Sets Syst
, vol.147
, pp. 39-56
-
-
Gabrys, B.1
-
14
-
-
33746672590
-
Genetic algorithms in classifier fusion
-
Gabrys B, Ruta D (2006) Genetic algorithms in classifier fusion. Appl Soft Comput 6(4): 337-347.
-
(2006)
Appl Soft Comput
, vol.6
, Issue.4
, pp. 337-347
-
-
Gabrys, B.1
Ruta, D.2
-
15
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4(1): 1-58.
-
(1992)
Neural Comput
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
17
-
-
0031568357
-
Bias/variance analyses of mixtures-of-experts architectures
-
Jacobs R (1997) Bias/variance analyses of mixtures-of-experts architectures. Neural Comput 9(2): 369-383.
-
(1997)
Neural Comput
, vol.9
, Issue.2
, pp. 369-383
-
-
Jacobs, R.1
-
18
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7-9): 686-700.
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
19
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945): 978-982.
-
(1990)
Science
, vol.247
, Issue.4945
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
20
-
-
0001071040
-
A resource-allocating network for function interpolation
-
Platt J (1991) A resource-allocating network for function interpolation. Neural Comput 3(2): 213-225.
-
(1991)
Neural Comput
, vol.3
, Issue.2
, pp. 213-225
-
-
Platt, J.1
-
21
-
-
0000876414
-
Local learning algorithms
-
Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4(6): 888-900.
-
(1992)
Neural Comput
, vol.4
, Issue.6
, pp. 888-900
-
-
Bottou, L.1
Vapnik, V.2
-
22
-
-
0001108227
-
Constructive incremental learning from only local information
-
Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10(8): 2047-2084.
-
(1998)
Neural Comput
, vol.10
, Issue.8
, pp. 2047-2084
-
-
Schaal, S.1
Atkeson, C.G.2
-
24
-
-
0032923221
-
Catastrophic forgetting in connectionist networks: Causes, consequences and solutions
-
French R (1999) Catastrophic forgetting in connectionist networks: Causes, consequences and solutions. Trends Cogn Sci 3(4): 128-135.
-
(1999)
Trends Cogn Sci
, vol.3
, Issue.4
, pp. 128-135
-
-
French, R.1
-
25
-
-
27144556425
-
Incremental online learning in high dimensions
-
Vijayakumar S, D'Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17(12): 2602-2634.
-
(2005)
Neural Comput
, vol.17
, Issue.12
, pp. 2602-2634
-
-
Vijayakumar, S.1
D'Souza, A.2
Schaal, S.3
-
26
-
-
0036791948
-
A perspective view and survey of meta-learning
-
Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev 18(2): 77-95.
-
(2002)
Artif Intell Rev
, vol.18
, Issue.2
, pp. 77-95
-
-
Vilalta, R.1
Drissi, Y.2
-
28
-
-
0013146682
-
Meta-learning by landmarking various learning algorithms
-
Morgan Kaufmann, Menlo Park
-
Pfahringer B, Bensusan H, Giraud-Carrier C (2000) Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth international conference on machine learning, vol 951. Morgan Kaufmann, Menlo Park, pp 743-750.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, vol.951
, pp. 743-750
-
-
Pfahringer, B.1
Bensusan, H.2
Giraud-Carrier, C.3
-
29
-
-
1642324096
-
Model selection via meta-learning: A comparative study
-
Kalousis A, Hilario M (2001) Model selection via meta-learning: A comparative study. Int J Artif Intell Tools 10(4): 525-554.
-
(2001)
Int J Artif Intell Tools
, vol.10
, Issue.4
, pp. 525-554
-
-
Kalousis, A.1
Hilario, M.2
-
31
-
-
0028940068
-
Use, disuse, and growth of the brain
-
National Academy of Sciences, USA
-
Wong RO (1995) Use, disuse, and growth of the brain. In: Proceedings of the National Academy of Sciences of the United States of America. vol 92, National Academy of Sciences, USA, pp 1797-1799.
-
(1995)
Proceedings of the National Academy of Sciences of the United States of America
, vol.92
, pp. 1797-1799
-
-
Wong, R.O.1
-
32
-
-
67349089877
-
Data-driven soft sensor in the process industry
-
Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensor in the process industry. Comput Chem Eng 33(4): 795-814.
-
(2009)
Comput Chem Eng
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
33
-
-
70349142216
-
Soft sensor based on adaptive local learning
-
Coghill MK, Kasabov N, George (eds), Lecture Notes in Computer Science. Auckland, New Zealand, Springer, Berlin
-
Kadlec P, Gabrys B (2008) Soft sensor based on adaptive local learning. In: Coghill MK, Kasabov N, George (eds) Proceedings of the international conference on neural information processing, vol 5506, Lecture Notes in Computer Science. Auckland, New Zealand, Springer, Berlin, pp 1172-1179.
-
(2008)
Proceedings of the International Conference on Neural Information Processing
, vol.5506
, pp. 1172-1179
-
-
Kadlec, P.1
Gabrys, B.2
-
34
-
-
0035670764
-
Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
-
Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern B 31(6): 902-918.
-
(2001)
IEEE Trans Syst Man Cybern B
, vol.31
, Issue.6
, pp. 902-918
-
-
Kasabov, N.1
-
35
-
-
0036530967
-
Denfis: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
-
Kasabov N, Song Q (2002) Denfis: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
-
(2002)
IEEE Trans Fuzzy Syst
, vol.10
, Issue.2
, pp. 144-154
-
-
Kasabov, N.1
Song, Q.2
-
36
-
-
1842477778
-
Flexible models with evolving structure
-
Angelov P, Filev DP (2004) Flexible models with evolving structure. Int J Intell Syst 19(4): 327-340.
-
(2004)
Int J Intell Syst
, vol.19
, Issue.4
, pp. 327-340
-
-
Angelov, P.1
Filev, D.P.2
-
38
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6(1): 5-20.
-
(2005)
Inf Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
39
-
-
0001940458
-
Adaptive mixtures of local experts
-
Jacobs R (1991) Adaptive mixtures of local experts. Neural Comput 3(1): 79-87.
-
(1991)
Neural Comput
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.1
-
40
-
-
51749114883
-
Neural network ensembles for time series prediction
-
IEEE Computer Society, Orlando
-
Ruta D, Gabrys B (2007) Neural network ensembles for time series prediction. In: International joint conference on neural networks 2007. IEEE Computer Society, Orlando, pp 1204-1209.
-
(2007)
International Joint Conference on Neural Networks 2007
, pp. 1204-1209
-
-
Ruta, D.1
Gabrys, B.2
-
41
-
-
51749110694
-
Dynamic pooling for the combination of forecasts generated using multi level learning
-
IEEE Computer Society
-
Riedel S, Gabrys B (2007) Dynamic pooling for the combination of forecasts generated using multi level learning. In: International joint conference on neural networks 2007, IEEE Computer Society, pp 454-459.
-
(2007)
International Joint Conference on Neural Networks 2007
, pp. 454-459
-
-
Riedel, S.1
Gabrys, B.2
-
43
-
-
23944495345
-
Simplets: A simplified method for learning evolving takagi-sugeno fuzzy models
-
IEEE
-
Angelov P, Filev D (2005) Simplets: a simplified method for learning evolving takagi-sugeno fuzzy models. In: The 14th IEEE international conference on fuzzy systems, IEEE, pp 1068-1073.
-
(2005)
The 14th IEEE International Conference on Fuzzy Systems
, pp. 1068-1073
-
-
Angelov, P.1
Filev, D.2
-
46
-
-
0034187078
-
General fuzzy min-max neural network for clustering and classification
-
Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11(3): 769-783.
-
(2000)
IEEE Trans Neural Netw
, vol.11
, Issue.3
, pp. 769-783
-
-
Gabrys, B.1
Bargiela, A.2
-
47
-
-
1142303894
-
Combining labelled and unlabelled data in the design of pattern classification systems
-
Gabrys B, Petrakieva L (2004) Combining labelled and unlabelled data in the design of pattern classification systems. Int J Approx Reason 35(3): 251-273.
-
(2004)
Int J Approx Reason
, vol.35
, Issue.3
, pp. 251-273
-
-
Gabrys, B.1
Petrakieva, L.2
-
48
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
MIT Press, Cambridge
-
Neal RM, Hinton GE (1999) A view of the em algorithm that justifies incremental, sparse, and other variants. In: Learning in graphical models, vol 89. MIT Press, Cambridge, pp 355-368.
-
(1999)
Learning in Graphical Models
, vol.89
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
53
-
-
33749618778
-
Learning with drift detection
-
Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Advances in artificial intelligence SBIA 2004: 17th Brazilian, vol 3171, pp 286-295.
-
(2004)
Advances in Artificial Intelligence SBIA 2004: 17th Brazilian
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
54
-
-
0034299906
-
Selecting examples for partial memory learning
-
Maloof MA, Michalski RS (2000) Selecting examples for partial memory learning. Mach Learn 41(1): 27-52.
-
(2000)
Mach Learn
, vol.41
, Issue.1
, pp. 27-52
-
-
Maloof, M.A.1
Michalski, R.S.2
-
55
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
Klinkenberg R (2004) Learning drifting concepts: Example selection vs. example weighting. Intell Data Anal 8(3): 281-300.
-
(2004)
Intell Data Anal
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
57
-
-
18744376591
-
High breakdown estimators for principal components: The projection-pursuit approach revisited
-
Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection-pursuit approach revisited. J Multivar Anal 95(1): 206-226.
-
(2005)
J Multivar Anal
, vol.95
, Issue.1
, pp. 206-226
-
-
Croux, C.1
Ruiz-Gazen, A.2
-
61
-
-
0345399126
-
The probable error of a mean
-
Gosset WS (1908) The probable error of a mean. Biometrika 6(1): 1-25.
-
(1908)
Biometrika
, vol.6
, Issue.1
, pp. 1-25
-
-
Gosset, W.S.1
-
62
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3): 1065-1076.
-
(1962)
Ann Math Stat
, vol.33
, Issue.3
, pp. 1065-1076
-
-
Parzen, E.1
-
63
-
-
44649125466
-
A library for locally weighted projection regression
-
Klanke S, Vijayakumar S, Schaal S (2008) A library for locally weighted projection regression. J Mach Learn Res 9: 623-626.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 623-626
-
-
Klanke, S.1
Vijayakumar, S.2
Schaal, S.3
|