메뉴 건너뛰기




Volumn 1, Issue 4, 2009, Pages 241-269

Erratum to Architecture for development of adaptive on-line prediction models(Memetic Comp., (2009), 1, (241-269), 10.1007/s12293-009-0017-8);Architecture for development of adaptive on-line prediction models

Author keywords

Adaptive systems; Ensemble methods; Industrial applications; Life long learning; Local learning; Meta learning; Soft sensors

Indexed keywords


EID: 70949095442     PISSN: 18659284     EISSN: 18659292     Source Type: Journal    
DOI: 10.1007/s12293-013-0106-6     Document Type: Erratum
Times cited : (49)

References (63)
  • 1
    • 0012582658 scopus 로고    scopus 로고
    • Industrial applications of soft computing: A review
    • Dote Y, Ovaska SJ (2001) Industrial applications of soft computing: a review. Proc IEEE 89(9): 1243-1265.
    • (2001) Proc IEEE , vol.89 , Issue.9 , pp. 1243-1265
    • Dote, Y.1    Ovaska, S.J.2
  • 2
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 3
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for hybrid neural networks. Neural Netw Speech Image Proc 126-142.
    • (1993) Neural Netw Speech Image Proc , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 5
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • Lecture Notes in Computer Sciences. Springer, Berlin
    • Valentini G, Masulli F (2002) Ensembles of learning machines. In: 13th Italian workshop on neural nets, vol 2486, Lecture Notes in Computer Sciences. Springer, Berlin, pp 3-22.
    • (2002) 13th Italian Workshop on Neural Nets , vol.2486 , pp. 3-22
    • Valentini, G.1    Masulli, F.2
  • 6
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation and active learning. Adv Neural Inf Proc Syst (7): 231-238.
    • (1995) Adv Neural Inf Proc Syst , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1): 119-139.
    • (1997) J Comput Syst Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169-198.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 10
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E, Kohavi RON (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36: 105-139.
    • (1999) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.O.N.2
  • 11
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • Ruta D, Gabrys B (2000) An overview of classifier fusion methods. Comput Inf Syst 7(1): 1-10.
    • (2000) Comput Inf Syst , vol.7 , Issue.1 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 12
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D, Gabrys B (2005) Classifier selection for majority voting. Inf Fusion 6(1): 63-81.
    • (2005) Inf Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 13
    • 4344642807 scopus 로고    scopus 로고
    • Learning hybrid neuro-fuzzy classiffer models from data: To combine or not to combine
    • Gabrys B (2004) Learning hybrid neuro-fuzzy classiffer models from data: to combine or not to combine. Fuzzy Sets Syst 147: 39-56.
    • (2004) Fuzzy Sets Syst , vol.147 , pp. 39-56
    • Gabrys, B.1
  • 14
    • 33746672590 scopus 로고    scopus 로고
    • Genetic algorithms in classifier fusion
    • Gabrys B, Ruta D (2006) Genetic algorithms in classifier fusion. Appl Soft Comput 6(4): 337-347.
    • (2006) Appl Soft Comput , vol.6 , Issue.4 , pp. 337-347
    • Gabrys, B.1    Ruta, D.2
  • 15
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4(1): 1-58.
    • (1992) Neural Comput , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 17
    • 0031568357 scopus 로고    scopus 로고
    • Bias/variance analyses of mixtures-of-experts architectures
    • Jacobs R (1997) Bias/variance analyses of mixtures-of-experts architectures. Neural Comput 9(2): 369-383.
    • (1997) Neural Comput , vol.9 , Issue.2 , pp. 369-383
    • Jacobs, R.1
  • 18
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7-9): 686-700.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 19
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945): 978-982.
    • (1990) Science , vol.247 , Issue.4945 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 20
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J (1991) A resource-allocating network for function interpolation. Neural Comput 3(2): 213-225.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 21
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4(6): 888-900.
    • (1992) Neural Comput , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 22
    • 0001108227 scopus 로고    scopus 로고
    • Constructive incremental learning from only local information
    • Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10(8): 2047-2084.
    • (1998) Neural Comput , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 24
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks: Causes, consequences and solutions
    • French R (1999) Catastrophic forgetting in connectionist networks: Causes, consequences and solutions. Trends Cogn Sci 3(4): 128-135.
    • (1999) Trends Cogn Sci , vol.3 , Issue.4 , pp. 128-135
    • French, R.1
  • 25
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • Vijayakumar S, D'Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17(12): 2602-2634.
    • (2005) Neural Comput , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3
  • 26
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev 18(2): 77-95.
    • (2002) Artif Intell Rev , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 29
    • 1642324096 scopus 로고    scopus 로고
    • Model selection via meta-learning: A comparative study
    • Kalousis A, Hilario M (2001) Model selection via meta-learning: A comparative study. Int J Artif Intell Tools 10(4): 525-554.
    • (2001) Int J Artif Intell Tools , vol.10 , Issue.4 , pp. 525-554
    • Kalousis, A.1    Hilario, M.2
  • 32
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensor in the process industry
    • Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensor in the process industry. Comput Chem Eng 33(4): 795-814.
    • (2009) Comput Chem Eng , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 33
    • 70349142216 scopus 로고    scopus 로고
    • Soft sensor based on adaptive local learning
    • Coghill MK, Kasabov N, George (eds), Lecture Notes in Computer Science. Auckland, New Zealand, Springer, Berlin
    • Kadlec P, Gabrys B (2008) Soft sensor based on adaptive local learning. In: Coghill MK, Kasabov N, George (eds) Proceedings of the international conference on neural information processing, vol 5506, Lecture Notes in Computer Science. Auckland, New Zealand, Springer, Berlin, pp 1172-1179.
    • (2008) Proceedings of the International Conference on Neural Information Processing , vol.5506 , pp. 1172-1179
    • Kadlec, P.1    Gabrys, B.2
  • 34
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern B 31(6): 902-918.
    • (2001) IEEE Trans Syst Man Cybern B , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 35
    • 0036530967 scopus 로고    scopus 로고
    • Denfis: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N, Song Q (2002) Denfis: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 36
    • 1842477778 scopus 로고    scopus 로고
    • Flexible models with evolving structure
    • Angelov P, Filev DP (2004) Flexible models with evolving structure. Int J Intell Syst 19(4): 327-340.
    • (2004) Int J Intell Syst , vol.19 , Issue.4 , pp. 327-340
    • Angelov, P.1    Filev, D.P.2
  • 38
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6(1): 5-20.
    • (2005) Inf Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 39
    • 0001940458 scopus 로고
    • Adaptive mixtures of local experts
    • Jacobs R (1991) Adaptive mixtures of local experts. Neural Comput 3(1): 79-87.
    • (1991) Neural Comput , vol.3 , Issue.1 , pp. 79-87
    • Jacobs, R.1
  • 40
    • 51749114883 scopus 로고    scopus 로고
    • Neural network ensembles for time series prediction
    • IEEE Computer Society, Orlando
    • Ruta D, Gabrys B (2007) Neural network ensembles for time series prediction. In: International joint conference on neural networks 2007. IEEE Computer Society, Orlando, pp 1204-1209.
    • (2007) International Joint Conference on Neural Networks 2007 , pp. 1204-1209
    • Ruta, D.1    Gabrys, B.2
  • 41
    • 51749110694 scopus 로고    scopus 로고
    • Dynamic pooling for the combination of forecasts generated using multi level learning
    • IEEE Computer Society
    • Riedel S, Gabrys B (2007) Dynamic pooling for the combination of forecasts generated using multi level learning. In: International joint conference on neural networks 2007, IEEE Computer Society, pp 454-459.
    • (2007) International Joint Conference on Neural Networks 2007 , pp. 454-459
    • Riedel, S.1    Gabrys, B.2
  • 43
    • 23944495345 scopus 로고    scopus 로고
    • Simplets: A simplified method for learning evolving takagi-sugeno fuzzy models
    • IEEE
    • Angelov P, Filev D (2005) Simplets: a simplified method for learning evolving takagi-sugeno fuzzy models. In: The 14th IEEE international conference on fuzzy systems, IEEE, pp 1068-1073.
    • (2005) The 14th IEEE International Conference on Fuzzy Systems , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 46
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11(3): 769-783.
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 47
    • 1142303894 scopus 로고    scopus 로고
    • Combining labelled and unlabelled data in the design of pattern classification systems
    • Gabrys B, Petrakieva L (2004) Combining labelled and unlabelled data in the design of pattern classification systems. Int J Approx Reason 35(3): 251-273.
    • (2004) Int J Approx Reason , vol.35 , Issue.3 , pp. 251-273
    • Gabrys, B.1    Petrakieva, L.2
  • 48
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • MIT Press, Cambridge
    • Neal RM, Hinton GE (1999) A view of the em algorithm that justifies incremental, sparse, and other variants. In: Learning in graphical models, vol 89. MIT Press, Cambridge, pp 355-368.
    • (1999) Learning in Graphical Models , vol.89 , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 54
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • Maloof MA, Michalski RS (2000) Selecting examples for partial memory learning. Mach Learn 41(1): 27-52.
    • (2000) Mach Learn , vol.41 , Issue.1 , pp. 27-52
    • Maloof, M.A.1    Michalski, R.S.2
  • 55
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • Klinkenberg R (2004) Learning drifting concepts: Example selection vs. example weighting. Intell Data Anal 8(3): 281-300.
    • (2004) Intell Data Anal , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 57
    • 18744376591 scopus 로고    scopus 로고
    • High breakdown estimators for principal components: The projection-pursuit approach revisited
    • Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection-pursuit approach revisited. J Multivar Anal 95(1): 206-226.
    • (2005) J Multivar Anal , vol.95 , Issue.1 , pp. 206-226
    • Croux, C.1    Ruiz-Gazen, A.2
  • 61
    • 0345399126 scopus 로고
    • The probable error of a mean
    • Gosset WS (1908) The probable error of a mean. Biometrika 6(1): 1-25.
    • (1908) Biometrika , vol.6 , Issue.1 , pp. 1-25
    • Gosset, W.S.1
  • 62
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3): 1065-1076.
    • (1962) Ann Math Stat , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 63
    • 44649125466 scopus 로고    scopus 로고
    • A library for locally weighted projection regression
    • Klanke S, Vijayakumar S, Schaal S (2008) A library for locally weighted projection regression. J Mach Learn Res 9: 623-626.
    • (2008) J Mach Learn Res , vol.9 , pp. 623-626
    • Klanke, S.1    Vijayakumar, S.2    Schaal, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.