메뉴 건너뛰기




Volumn 16, Issue , 2014, Pages 89-101

Study on multi-center fuzzy C-means algorithm based on transitive closure and spectral clustering

Author keywords

Fuzzy C means algorithm; Lattice similarity; Multi center; Spectral clustering

Indexed keywords

ARTIFICIAL DATASETS; FUZZY C MEANS CLUSTERING; FUZZY C-MEANS ALGORITHMS; FUZZY MEMBERSHIP VALUES; LATTICE SIMILARITY; MULTI-CENTER; SPECTRAL CLUSTERING; TRANSITIVE CLOSURE;

EID: 84891598128     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.11.020     Document Type: Article
Times cited : (19)

References (22)
  • 1
    • 84861903592 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
    • N.S. Mishra, S. Ghosh, and A. Ghosh Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images Applied Soft Computing 12 2012 2683 2692
    • (2012) Applied Soft Computing , vol.12 , pp. 2683-2692
    • Mishra, N.S.1    Ghosh, S.2    Ghosh, A.3
  • 2
    • 81855218714 scopus 로고    scopus 로고
    • Spectral clustering with fuzzy similarity measure
    • F. Zhao, H.Q. Liu, and L.C. Jiao Spectral clustering with fuzzy similarity measure Digital Signal Processing 21 2011 701 709
    • (2011) Digital Signal Processing , vol.21 , pp. 701-709
    • Zhao, F.1    Liu, H.Q.2    Jiao, L.C.3
  • 3
    • 84881650355 scopus 로고    scopus 로고
    • Fuzzy C-means improvement using relaxed constraints support vector machines
    • M. Sabzekar, and M. Naghibzadeh Fuzzy C-means improvement using relaxed constraints support vector machines Applied Soft Computing 13 2013 881 890
    • (2013) Applied Soft Computing , vol.13 , pp. 881-890
    • Sabzekar, M.1    Naghibzadeh, M.2
  • 4
    • 77953617726 scopus 로고    scopus 로고
    • Cluster validity index for estimation of fuzzy clusters of different sizes and densities
    • K.R. Zalik Cluster validity index for estimation of fuzzy clusters of different sizes and densities Pattern Recognition 43 10 2010 3374 3390
    • (2010) Pattern Recognition , vol.43 , Issue.10 , pp. 3374-3390
    • Zalik, K.R.1
  • 5
    • 67149116745 scopus 로고    scopus 로고
    • A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation
    • Y.N. Wang, C.S. Li, and Y. Zuo A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation IEEE Transactions on Fuzzy Systems 17 3 2009 568 577
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.3 , pp. 568-577
    • Wang, Y.N.1    Li, C.S.2    Zuo, Y.3
  • 6
    • 77950628260 scopus 로고    scopus 로고
    • Modified fuzzy C-means for ordinal valued attributes with particle swarm for optimization
    • R.K. Brouwer, and A. Groenwold Modified fuzzy C-means for ordinal valued attributes with particle swarm for optimization Fuzzy Sets and Systems 161 13 2010 1774 1789
    • (2010) Fuzzy Sets and Systems , vol.161 , Issue.13 , pp. 1774-1789
    • Brouwer, R.K.1    Groenwold, A.2
  • 9
    • 84865860969 scopus 로고    scopus 로고
    • Fuzzy spectral clustering with robust spatial information for image segmentation
    • H.Q. Liu, F. Zhao, and L.C. Jiao Fuzzy spectral clustering with robust spatial information for image segmentation Applied Soft Computing 12 2012 3636 3647
    • (2012) Applied Soft Computing , vol.12 , pp. 3636-3647
    • Liu, H.Q.1    Zhao, F.2    Jiao, L.C.3
  • 11
    • 0037118554 scopus 로고    scopus 로고
    • Unsupervised fuzzy clustering with multi-center clusters
    • DOI 10.1016/S0165-0114(01)00191-9, PII S0165011401001919
    • C.W. Tao Unsupervised fuzzy clustering with multi-center clusters Fuzzy Sets and Systems 128 2002 305 322 (Pubitemid 34531608)
    • (2002) Fuzzy Sets and Systems , vol.128 , Issue.3 , pp. 305-322
    • Tao, C.W.1
  • 14
    • 9744255892 scopus 로고    scopus 로고
    • Fuzzy clustering methods search optimal number of clusters
    • J. Yu, and Q.S. Cheng Fuzzy clustering methods search optimal number of clusters Science in China (E) 32 2 2002 274 280
    • (2002) Science in China (E) , vol.32 , Issue.2 , pp. 274-280
    • Yu, J.1    Cheng, Q.S.2
  • 15
    • 78049529962 scopus 로고    scopus 로고
    • Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks
    • N.A. Erilli, U. Yolcu, and E. Eǧrioǧlu et al. Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks Expert Systems with Applications: An International Journal 38 3 2011 2248 2252
    • (2011) Expert Systems with Applications: An International Journal , vol.38 , Issue.3 , pp. 2248-2252
    • Erilli, N.A.1    Yolcu, U.2    Eǧrioǧlu, E.3
  • 17
    • 47249106068 scopus 로고    scopus 로고
    • Image texture classification using a manifold distance based evolutionary clustering method
    • M.G. Gong, L.C. Jiao, and L.F. Bo et al. Image texture classification using a manifold distance based evolutionary clustering method Optical Engineering 47 7 2008 077201-1 077201-10
    • (2008) Optical Engineering , vol.47 , Issue.7 , pp. 0772011-07720110
    • Gong, M.G.1    Jiao, L.C.2    Bo, L.F.3
  • 18
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik, and S. Bandyopadhyay Genetic algorithm-based clustering technique Pattern Recognition 33 9 2000 1455 1465
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 21
  • 22
    • 34548150972 scopus 로고    scopus 로고
    • Robust self-tuning semi-supervised learning
    • DOI 10.1016/j.neucom.2006.11.004, PII S0925231206004632
    • F. Wang, and C.S. Zhang Robust self-tuning semi-supervised learning Neurocomputing 70 2007 2931 2939 (Pubitemid 47308608)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2931-2939
    • Wang, F.1    Zhang, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.