메뉴 건너뛰기




Volumn 38, Issue 3, 2011, Pages 2248-2252

Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks

Author keywords

Artificial neural networks; Cluster validation index; Fuzzy clustering; Number of cluster

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLUSTER VALIDATION; CLUSTER VALIDATION INDICES; CLUSTERING ANALYSIS; CLUSTERING PROBLEMS; DETERMINING THE NUMBER OF CLUSTERS; MEMBERSHIP DEGREES; NUMBER OF CLUSTERS; PRE-INFORMATION; VALIDATION INDEX;

EID: 78049529962     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.08.012     Document Type: Article
Times cited : (37)

References (25)
  • 2
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets Journal of Cybernetics 3 1974 58 73
    • (1974) Journal of Cybernetics , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 4
    • 80053413223 scopus 로고    scopus 로고
    • Fuzzy Bayesian validation for fuzzy clustering of yeast cell-cycle data
    • S.B. Cho, and S.H. Yoo Fuzzy Bayesian validation for fuzzy clustering of yeast cell-cycle data Pattern Recognition 2005
    • (2005) Pattern Recognition
    • Cho, S.B.1    Yoo, S.H.2
  • 5
    • 4944242834 scopus 로고    scopus 로고
    • A hybrid approach for solving the cluster validity problem
    • Chong, A.; Gedeon, T. D.; & Koczy, L. T. (2002). A hybrid approach for solving the cluster validity problem. In IEEE conf. on digital signal pro. (pp. 1207-1210, Vol. 2).
    • (2002) IEEE Conf. on Digital Signal Pro. , vol.2 , pp. 1207-1210
    • Chong, A.1    Gedeon, T.D.2    Koczy, L.T.3
  • 6
    • 0030141444 scopus 로고    scopus 로고
    • Validating fuzzy partition obtained through c-shells clustering
    • R.N. Dave Validating fuzzy partition obtained through c-shells clustering Pattern Recognition Letters 9 1996 613 623
    • (1996) Pattern Recognition Letters , vol.9 , pp. 613-623
    • Dave, R.N.1
  • 8
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for the Fuzzy C-Means method
    • Fukuyama, Y.; & Sugeno, M. (1989). A new method of choosing the number of clusters for the Fuzzy C-Means method. In Proceedings of 5th fuzzy systems symposium (pp 247-250).
    • (1989) Proceedings of 5th Fuzzy Systems Symposium , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 11
    • 9544250381 scopus 로고    scopus 로고
    • A cluster validation index for GK cluster analysis based on relative degree of sharing
    • Y.I. Kim, D.W. Kim, D. Lee, and H.K. Lee A cluster validation index for GK cluster analysis based on relative degree of sharing Information Sciences 168 1-4 2004 225 242
    • (2004) Information Sciences , vol.168 , Issue.14 , pp. 225-242
    • Kim, Y.I.1    Kim, D.W.2    Lee, D.3    Lee, H.K.4
  • 12
    • 25844500444 scopus 로고    scopus 로고
    • New indices for cluster validity assessment
    • M. Kim, and R.S. Ramakrishna New indices for cluster validity assessment Pattern Recognition Letters 26 15 2005 2353 2363
    • (2005) Pattern Recognition Letters , vol.26 , Issue.15 , pp. 2353-2363
    • Kim, M.1    Ramakrishna, R.S.2
  • 13
    • 0032178397 scopus 로고    scopus 로고
    • Cluster validity index for fuzzy clustering
    • S.H. Kwon Cluster validity index for fuzzy clustering Electronics Letters 34 22 1998 2176 2178
    • (1998) Electronics Letters , vol.34 , Issue.22 , pp. 2176-2178
    • Kwon, S.H.1
  • 14
    • 0001498315 scopus 로고    scopus 로고
    • The flexibility of fuzzy clustering illustred by examples
    • T. Naes, and T.H. Mevik The flexibility of fuzzy clustering illustred by examples Journal of Chemo Metrics 1999
    • (1999) Journal of Chemo Metrics
    • Naes, T.1    Mevik, T.H.2
  • 16
    • 0004252391 scopus 로고    scopus 로고
    • John Wiley & Sons Inc. Pub New York, USA
    • A. Rencher Multivariate analysis 2002 John Wiley & Sons Inc. Pub New York, USA
    • (2002) Multivariate Analysis
    • Rencher, A.1
  • 18
    • 0030381104 scopus 로고    scopus 로고
    • A validity measure for fuzzy clustering and its use in selecting optimal number of clusters
    • N.S. Rhee, and K.W. Oh A validity measure for fuzzy clustering and its use in selecting optimal number of clusters IEEE International Conference on Fuzzy Systems 2 1996 1020 1025
    • (1996) IEEE International Conference on Fuzzy Systems , vol.2 , pp. 1020-1025
    • Rhee, N.S.1    Oh, K.W.2
  • 21
    • 0001702254 scopus 로고
    • Cluster validity for fuzzy clustering algorithms
    • M.P. Windham Cluster validity for fuzzy clustering algorithms Fuzzy Set and Systems 5 1981 175 177
    • (1981) Fuzzy Set and Systems , vol.5 , pp. 175-177
    • Windham, M.P.1
  • 22
    • 18444403761 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • K.L. Wu, and M.S. Yang A cluster validity index for fuzzy clustering Pattern Recognition Letters 26 2005 275 1291
    • (2005) Pattern Recognition Letters , vol.26 , pp. 275-1291
    • Wu, K.L.1    Yang, M.S.2
  • 24
    • 0033167147 scopus 로고    scopus 로고
    • A new cluster validity for fuzzy clustering
    • N. Zahid, M. Limouri, and A. Essaid A new cluster validity for fuzzy clustering Pattern Recognition 31 1999 1089 1097
    • (1999) Pattern Recognition , vol.31 , pp. 1089-1097
    • Zahid, N.1    Limouri, M.2    Essaid, A.3
  • 25
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • Y. Zhang, and W. Wang On fuzzy cluster validity indices Fuzzy Sets and Systems 158 2007 2095 2117
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 2095-2117
    • Zhang, Y.1    Wang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.