메뉴 건너뛰기




Volumn 51, Issue , 2014, Pages 67-79

Lagrangian support vector regression via unconstrained convex minimization

Author keywords

Generalized derivative approach; Smooth approximation; Support vector regression; Unconstrained convex minimization

Indexed keywords

LAGRANGE MULTIPLIERS; REGRESSION ANALYSIS;

EID: 84891335988     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.12.003     Document Type: Article
Times cited : (40)

References (32)
  • 3
    • 77956879884 scopus 로고    scopus 로고
    • On finite Newton method for support vector regression
    • Balasundaram S., Singh R. On finite Newton method for support vector regression. Neural Computing & Applications 2010, 19(7):967-977.
    • (2010) Neural Computing & Applications , vol.19 , Issue.7 , pp. 967-977
    • Balasundaram, S.1    Singh, R.2
  • 5
    • 21744434576 scopus 로고    scopus 로고
    • Seeking multi-threshold directly from support vectors for image segmentation
    • Chen S., Wang M. Seeking multi-threshold directly from support vectors for image segmentation. Neurocomputing 2005, 67:335-344.
    • (2005) Neurocomputing , vol.67 , pp. 335-344
    • Chen, S.1    Wang, M.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 8
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine
    • Fung G., Mangasarian O.L. Finite Newton method for Lagrangian support vector machine. Neurocomputing 2003, 55:39-55.
    • (2003) Neurocomputing , vol.55 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 9
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung G., Mangasarian O.L. A feature selection Newton method for support vector machine classification. Computational optimization and Applications 2004, 28:185-202.
    • (2004) Computational optimization and Applications , vol.28 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 10
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • Garcia S., Herrera F. An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine Learning Research 2008, 9:2677-2694.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machine
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machine. Machine Learning 2002, 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: model and experiments
    • Ji Y., Sun S. Multitask multiclass support vector machines: model and experiments. Pattern Recognition 2013, 46(3):914-924.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 15
    • 84957069814 scopus 로고    scopus 로고
    • Rouveriol, Text categorization with support vector machines: learning with many relevant features. In European conference on machine learning No. 10, Chemnitz, Germany
    • Joachims, T., Ndellec, C., & Rouveriol, (1998). Text categorization with support vector machines: learning with many relevant features. In European conference on machine learning No. 10, Chemnitz, Germany (pp. 137-142).
    • (1998) , pp. 137-142
    • Joachims, T.1    Ndellec, C.2
  • 20
  • 24
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X. TSVR: an efficient twin support vector machine for regression. Neural Networks 2010, 23(3):365-372.
    • (2010) Neural Networks , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 25
    • 78649962833 scopus 로고    scopus 로고
    • Primal twin support vector regression and its sparse approximation
    • Peng X. Primal twin support vector regression and its sparse approximation. Neurocomputing 2010, 73:2846-2858.
    • (2010) Neurocomputing , vol.73 , pp. 2846-2858
    • Peng, X.1
  • 27
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J., Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74(17):3609-3618.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 30
    • 84255197089 scopus 로고    scopus 로고
    • Multi-view Laplacian support vector machines
    • 7121
    • Sun S. Multi-view Laplacian support vector machines. LNAI 2011, vol. 7121:209-222.
    • (2011) LNAI , pp. 209-222
    • Sun, S.1
  • 32
    • 84869055767 scopus 로고    scopus 로고
    • Multitask twin support vector machines
    • 7664
    • Xie X., Sun S. Multitask twin support vector machines. LNCS 2012, vol. 7664:341-348.
    • (2012) LNCS , pp. 341-348
    • Xie, X.1    Sun, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.