-
1
-
-
28444464820
-
-
Bao Y-K, Liu Z-T, Guo L, Wang W (2005) Forecasting stock composite index by fuzzy support vector machines regression. In: Proceedings of 4th international conference on machine learning and cybernetics, Guangzhou, pp 18-21.
-
-
-
-
3
-
-
0037381038
-
Support vector machines experts for time series forecasting
-
Cao LJ (2003) Support vector machines experts for time series forecasting. Neurocomputing 51: 321-339.
-
(2003)
Neurocomputing
, vol.51
, pp. 321-339
-
-
Cao, L.J.1
-
5
-
-
33748133361
-
A hybrid SARIMA and support vector machines for forecasting the production values of the machinery industry in Taiwan
-
Chen KY, Wang CH (2007) A hybrid SARIMA and support vector machines for forecasting the production values of the machinery industry in Taiwan. Expert Syst Appl 32(1): 254-264.
-
(2007)
Expert Syst Appl
, vol.32
, Issue.1
, pp. 254-264
-
-
Chen, K.Y.1
Wang, C.H.2
-
6
-
-
77956879336
-
-
Demiriz A, Bennett K, Breneman C, Embrechts M (2001) Support vector machine regression in chemometrics. Comp Sci Stat. http://www. rpi. edu/~bennek/QSARINT. ps. gz.
-
-
-
-
7
-
-
0035789613
-
-
Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of 7th ACMSIGKDD international conference on knowledge discovery and data mining, pp 77-86.
-
-
-
-
8
-
-
0242288821
-
Finite Newton method for Lagrangian support vector machine
-
Fung G, Mangasarian OL (2003) Finite Newton method for Lagrangian support vector machine. Neurocomputing 55: 39-55.
-
(2003)
Neurocomputing
, vol.55
, pp. 39-55
-
-
Fung, G.1
Mangasarian, O.L.2
-
9
-
-
77956874250
-
-
Gunn SR (1998) Support vector machines for classification and regression. Technical Report, School of Electronics and Computer Science, University of Southampton, Southampton, UK. http://www. isis. ecs. soton. ac. uk/resources/svminfo/.
-
-
-
-
11
-
-
0035479871
-
SSVM: A smooth support vector machine for classification
-
Lee YJ, Mangasarian OL (2001) SSVM: a smooth support vector machine for classification. Comput Optim Appl 20(1): 5-22.
-
(2001)
Comput Optim Appl
, vol.20
, Issue.1
, pp. 5-22
-
-
Lee, Y.J.1
Mangasarian, O.L.2
-
12
-
-
19944407892
-
ε-SSVR: A smooth support vector machine for ε-insensitive regression
-
Lee YJ, Hsieh W-F, Huang C-M (2005) ε-SSVR: a smooth support vector machine for ε-insensitive regression. IEEE Trans Knowl Data Eng 17(5): 678-685.
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.5
, pp. 678-685
-
-
Lee, Y.J.1
Hsieh, W.-F.2
Huang, C.-M.3
-
13
-
-
0001208950
-
Parallel gradient distribution in unconstrained optimization
-
Mangasarian OL (1995) Parallel gradient distribution in unconstrained optimization. SIAM J Control Optim 33(6): 1916-1925.
-
(1995)
SIAM J Control Optim
, vol.33
, Issue.6
, pp. 1916-1925
-
-
Mangasarian, O.L.1
-
14
-
-
84899018791
-
Active set support vector machine classification
-
T. K. Leen, T. G. Dietterich, and V. Tesp (Eds.), Cambridge: MIT Press
-
Mangasarian OL, Musicant DR (2001) Active set support vector machine classification. In: Leen TK, Dietterich TG, Tesp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 577-586.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 577-586
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
15
-
-
0036817951
-
A finite newton method for classification
-
Mangasarian OL (2002) A finite newton method for classification. Optim Methods Software 17: 913-929.
-
(2002)
Optim Methods Software
, vol.17
, pp. 913-929
-
-
Mangasarian, O.L.1
-
16
-
-
0031375732
-
-
Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using support vector machines. In: NNSP'97: neural networks for signal processing VII: proceedings of IEEE signal processing society workshop, Amelia Island, FL, USA, pp 511-520.
-
-
-
-
17
-
-
0003219590
-
Using support vector machines for time series prediction
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Cambridge: MIT Press
-
Muller KR, Smola AJ, Ratsch G, Schölkopf B, Kohlmorgen J (1999) Using support vector machines for time series prediction. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel methods-support vector learning. MIT Press, Cambridge, pp 243-254.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 243-254
-
-
Muller, K.R.1
Smola, A.J.2
Ratsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
-
19
-
-
0030673582
-
-
Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceedings on computer vision and pattern recognition, pp 130-136.
-
-
-
-
20
-
-
0037695279
-
-
Singapore: World Scientific
-
Suykens JAK, van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
van Gestel, T.2
de Brabanter, J.3
de Moor, B.4
Vandewalle, J.5
-
21
-
-
0000393458
-
Feed forward neural nets as models for time series forecasting
-
Tang Z, Fishwick PA (1993) Feed forward neural nets as models for time series forecasting. ORSA J Comput 5: 374-385.
-
(1993)
ORSA J Comput
, vol.5
, pp. 374-385
-
-
Tang, Z.1
Fishwick, P.A.2
-
22
-
-
0001023715
-
Application of support vector machines in financial time series with forecasting
-
Tay FEH, Cao LJ (2001) Application of support vector machines in financial time series with forecasting. Omega 29(4): 309-317.
-
(2001)
Omega
, vol.29
, Issue.4
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.J.2
-
23
-
-
33847154629
-
-
Tong Q, Zheng H, Wang X (2005) Gene prediction algorithm based on the statistical combination and the classification in terms of gene characteristics. In: International conference on neural networks and brain, vol 2, pp 673-677.
-
-
-
-
24
-
-
0033720879
-
Support vector machine for regression and applications to financial forecasting
-
Trafalis TB, Ince H (2000) Support vector machine for regression and applications to financial forecasting. Proc IEEE INNSENNS Int Joint Conf 16: 348-353.
-
(2000)
Proc IEEE INNSENNS Int Joint Conf
, vol.16
, pp. 348-353
-
-
Trafalis, T.B.1
Ince, H.2
-
26
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Networks 10(5): 988-999.
-
(1999)
IEEE Trans Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
28
-
-
0035314205
-
A simulation study of artificial neural networks for nonlinear time series forecasting
-
Zhang GP, Patuwo EB, Hu MY (2001) A simulation study of artificial neural networks for nonlinear time series forecasting. Comput Oper Res 28: 381-396.
-
(2001)
Comput Oper Res
, vol.28
, pp. 381-396
-
-
Zhang, G.P.1
Patuwo, E.B.2
Hu, M.Y.3
-
29
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
|