-
2
-
-
77956879884
-
On finite newton method for support vector regression
-
S. Balasundaram and R. Singh, On finite Newton method for support vector regression, Neural Computing & Applications 19 (2010), 967-977.
-
(2010)
Neural Computing & Applications
, vol.19
, pp. 967-977
-
-
Balasundaram, S.1
Singh, R.2
-
4
-
-
45149144372
-
Nonlinear prediction of chaotic time series
-
M.Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989), 335-356.
-
(1989)
Physica D
, vol.35
, pp. 335-356
-
-
Casdagli, M.1
-
6
-
-
21744434576
-
Seeking multi-threshold directly from support vectors for image segmentation
-
S. Chen and M. Wang, Seeking multi-threshold directly from support vectors for image segmentation, Neurocomputing 67 (2005), 335-344.
-
(2005)
Neurocomputing
, vol.67
, pp. 335-344
-
-
Chen, S.1
Wang, M.2
-
9
-
-
0242288821
-
Finite Newton method for Lagrangian support vector machine
-
G. Fung and O.L.Mangasarian, Finite Newton method for Lagrangian support vector machine, Neurocomputing 55 (2003), 39-55.
-
(2003)
Neurocomputing
, vol.55
, pp. 39-55
-
-
Fung, G.1
Mangasarian, O.L.2
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning 46 (2002), 389-422.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
13
-
-
19944407892
-
ε-SSVR: A smooth support vector machine for e-insensitive regression
-
Y.J. Lee, W.-F. Hsieh and C.-M. Huang, e-SSVR: A smooth support vector machine for e-insensitive regression, IEEE Trans on Knowledge and Data Engineering 17(5) (2005), 678-685.
-
(2005)
IEEE Trans on Knowledge and Data Engineering
, vol.17
, Issue.5
, pp. 678-685
-
-
Lee, Y.J.1
Hsieh, W.-F.2
Huang, C.-M.3
-
15
-
-
78650751806
-
Error tolerance based support vector machine for regression
-
G. Li, C. Wen, G.-B. Huang and Y. Chen, Error tolerance based support vector machine for regression, Neurocomputing 74(5) (2011), 771-782.
-
(2011)
Neurocomputing
, vol.74
, Issue.5
, pp. 771-782
-
-
Li, G.1
Wen, C.2
Huang, G.-B.3
Chen, Y.4
-
17
-
-
0001208950
-
Parallel gradient distribution in unconstrained optimization
-
O.L. Mangasarian, Parallel gradient distribution in unconstrained optimization, SIAMJournal of Control and Optimization 33(6) (1995), 1916-1925.
-
(1995)
SIAM Journal of Control and Optimization
, vol.33
, Issue.6
, pp. 1916-1925
-
-
Mangasarian, O.L.1
-
20
-
-
84899018791
-
Active set support vector machine classification
-
T.K. Leen, T.G. Dietterich and V. Tesp, eds MIT Press
-
O.L. Mangasarian and D.R.Musicant, Active set support vector machine classification, in: Advances in Neural Information Processing Systems 13, T.K. Leen, T.G. Dietterich and V. Tesp, eds, MIT Press, 2001, pp. 577-586.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 577-586
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
21
-
-
34250076671
-
Nonlinear complementarity as unconstrained and constrained minimization
-
O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization, Mathematical Programming, Series B 62 (1993), 277-297.
-
(1993)
Mathematical Programming, Series B
, vol.62
, pp. 277-297
-
-
Mangasarian, O.L.1
Solodov, M.V.2
-
22
-
-
17844363481
-
Bankruptcy prediction using optimal choice of kernel function parameters
-
J.E. Min and Y.-C. Lee, Bankruptcy prediction using optimal choice of kernel function parameters, Expert Systems with Applications 28(4) (2005), 603-614.
-
(2005)
Expert Systems with Applications
, vol.28
, Issue.4
, pp. 603-614
-
-
Min, J.E.1
Lee, Y.-C.2
-
23
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
Proc. of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA
-
S. Mukherjee, E. Osuna and F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: NNSP'97: Neural Networks for Signal Processing VII: in Proc. of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 1997, pp. 511-520.
-
(1997)
NNSP'97: Neural Networks for Signal Processing VII
, pp. 511-520
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
24
-
-
0003219590
-
Using support vector machines for time series prediction
-
B. Schölkopf, C.J.C. Burges and A.J. Smola, eds MIT Press, Cambridge, MA
-
K.R. Muller, A.J. Smola, G. Ratsch, B. Schölkopf and J. Kohlmorgen, Using support vector machines for time series prediction, in: Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C.J.C. Burges and A.J. Smola, eds, MIT Press, Cambridge, MA, 1999, pp. 243-254.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 243-254
-
-
Muller, K.R.1
Smola, A.J.2
Ratsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
-
28
-
-
0004161838
-
-
2nd Edition, Cambridge University Press
-
W.H. Press, S.A. Teukolsky,W.T.Vetterling and B.P. Flannery, Numerical Recipes in C, 2nd Edition, Cambridge University Press, 1994.
-
(1994)
Numerical Recipes in C
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
30
-
-
0035181296
-
Optimal control by least squares support vectormachines
-
J.A.K. Suykens, J. Vandewalle and B.D. Moor, Optimal control by least squares support vectormachines, Neural Networks 14(1) (2001), 23-25.
-
(2001)
Neural Networks
, vol.14
, Issue.1
, pp. 23-25
-
-
Suykens, J.A.K.1
Vandewalle, J.2
Moor, B.D.3
-
31
-
-
0001023715
-
Application of support vector machines in financial time series with forecasting
-
F.E.H. Tay and L.J. Cao, Application of support vector machines in financial time series with forecasting, Omega 29(4) (2001), 309-317.
-
(2001)
Omega
, vol.29
, Issue.4
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.J.2
|