메뉴 건너뛰기




Volumn 15, Issue 4, 2011, Pages 203-214

Finite Newton method for implicit Lagrangian support vector regression

Author keywords

Implicit Lagrangian support vector machines; Newton method; Support vector regression

Indexed keywords

FINITE NEWTON METHOD; FINITE TERMINATION; GENERALIZATION PERFORMANCE; IMPLICIT LAGRANGIAN SUPPORT VECTOR MACHINES; LAGRANGIAN; NEWTON ITERATIVE METHODS; NEWTON METHODS; OPTIMIZATION PACKAGES; QUADRATIC PROGRAMMING PROBLEMS; REAL-WORLD DATASETS; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; SYSTEM OF LINEAR EQUATIONS;

EID: 80055066407     PISSN: 13272314     EISSN: 18758827     Source Type: Journal    
DOI: 10.3233/KES-2011-0222     Document Type: Article
Times cited : (6)

References (32)
  • 2
    • 77956879884 scopus 로고    scopus 로고
    • On finite newton method for support vector regression
    • S. Balasundaram and R. Singh, On finite Newton method for support vector regression, Neural Computing & Applications 19 (2010), 967-977.
    • (2010) Neural Computing & Applications , vol.19 , pp. 967-977
    • Balasundaram, S.1    Singh, R.2
  • 4
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M.Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989), 335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 6
    • 21744434576 scopus 로고    scopus 로고
    • Seeking multi-threshold directly from support vectors for image segmentation
    • S. Chen and M. Wang, Seeking multi-threshold directly from support vectors for image segmentation, Neurocomputing 67 (2005), 335-344.
    • (2005) Neurocomputing , vol.67 , pp. 335-344
    • Chen, S.1    Wang, M.2
  • 9
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine
    • G. Fung and O.L.Mangasarian, Finite Newton method for Lagrangian support vector machine, Neurocomputing 55 (2003), 39-55.
    • (2003) Neurocomputing , vol.55 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning 46 (2002), 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 78650751806 scopus 로고    scopus 로고
    • Error tolerance based support vector machine for regression
    • G. Li, C. Wen, G.-B. Huang and Y. Chen, Error tolerance based support vector machine for regression, Neurocomputing 74(5) (2011), 771-782.
    • (2011) Neurocomputing , vol.74 , Issue.5 , pp. 771-782
    • Li, G.1    Wen, C.2    Huang, G.-B.3    Chen, Y.4
  • 17
    • 0001208950 scopus 로고
    • Parallel gradient distribution in unconstrained optimization
    • O.L. Mangasarian, Parallel gradient distribution in unconstrained optimization, SIAMJournal of Control and Optimization 33(6) (1995), 1916-1925.
    • (1995) SIAM Journal of Control and Optimization , vol.33 , Issue.6 , pp. 1916-1925
    • Mangasarian, O.L.1
  • 20
    • 84899018791 scopus 로고    scopus 로고
    • Active set support vector machine classification
    • T.K. Leen, T.G. Dietterich and V. Tesp, eds MIT Press
    • O.L. Mangasarian and D.R.Musicant, Active set support vector machine classification, in: Advances in Neural Information Processing Systems 13, T.K. Leen, T.G. Dietterich and V. Tesp, eds, MIT Press, 2001, pp. 577-586.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 577-586
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 21
    • 34250076671 scopus 로고
    • Nonlinear complementarity as unconstrained and constrained minimization
    • O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization, Mathematical Programming, Series B 62 (1993), 277-297.
    • (1993) Mathematical Programming, Series B , vol.62 , pp. 277-297
    • Mangasarian, O.L.1    Solodov, M.V.2
  • 22
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using optimal choice of kernel function parameters
    • J.E. Min and Y.-C. Lee, Bankruptcy prediction using optimal choice of kernel function parameters, Expert Systems with Applications 28(4) (2005), 603-614.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 603-614
    • Min, J.E.1    Lee, Y.-C.2
  • 23
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • Proc. of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA
    • S. Mukherjee, E. Osuna and F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: NNSP'97: Neural Networks for Signal Processing VII: in Proc. of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 1997, pp. 511-520.
    • (1997) NNSP'97: Neural Networks for Signal Processing VII , pp. 511-520
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 24
    • 0003219590 scopus 로고    scopus 로고
    • Using support vector machines for time series prediction
    • B. Schölkopf, C.J.C. Burges and A.J. Smola, eds MIT Press, Cambridge, MA
    • K.R. Muller, A.J. Smola, G. Ratsch, B. Schölkopf and J. Kohlmorgen, Using support vector machines for time series prediction, in: Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C.J.C. Burges and A.J. Smola, eds, MIT Press, Cambridge, MA, 1999, pp. 243-254.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 243-254
    • Muller, K.R.1    Smola, A.J.2    Ratsch, G.3    Schölkopf, B.4    Kohlmorgen, J.5
  • 30
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vectormachines
    • J.A.K. Suykens, J. Vandewalle and B.D. Moor, Optimal control by least squares support vectormachines, Neural Networks 14(1) (2001), 23-25.
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 23-25
    • Suykens, J.A.K.1    Vandewalle, J.2    Moor, B.D.3
  • 31
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series with forecasting
    • F.E.H. Tay and L.J. Cao, Application of support vector machines in financial time series with forecasting, Omega 29(4) (2001), 309-317.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.