-
1
-
-
33751256536
-
Nanoscale biocatalyst systems
-
Wang P. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 2006, 17:574-579.
-
(2006)
Curr. Opin. Biotechnol.
, vol.17
, pp. 574-579
-
-
Wang, P.1
-
2
-
-
53949106970
-
Nanobiocatalysis and its potential applications
-
Kim J.B., Grate J.W., Wang P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26:639-646.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 639-646
-
-
Kim, J.B.1
Grate, J.W.2
Wang, P.3
-
3
-
-
84875523288
-
Enzyme immobilisation on nanomaterials for biofuel production
-
Puri M., Barrow C.J., Verma M.L. Enzyme immobilisation on nanomaterials for biofuel production. Trends Biotechnol. 2013, 31:215-216.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 215-216
-
-
Puri, M.1
Barrow, C.J.2
Verma, M.L.3
-
4
-
-
27844518415
-
Nanostructures for enzyme stabilization
-
Kim J., Grate J.W., Wang P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 2006, 61:1017-1026.
-
(2006)
Chem. Eng. Sci.
, vol.61
, pp. 1017-1026
-
-
Kim, J.1
Grate, J.W.2
Wang, P.3
-
5
-
-
60649086344
-
Recent advances in nanostructured biocatalysts
-
Ge J., Lu D., Liu Z.X., Liu Z. Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 2009, 44:53-59.
-
(2009)
Biochem. Eng. J.
, vol.44
, pp. 53-59
-
-
Ge, J.1
Lu, D.2
Liu, Z.X.3
Liu, Z.4
-
6
-
-
0037442620
-
3 magnetic nanoparticles
-
3 magnetic nanoparticles. J. Am. Chem. Soc. 2003, 125:1684-1685.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 1684-1685
-
-
Dyal, A.1
Loos, K.2
Noto, M.3
Chang, S.W.4
Spagnoli, C.5
Shafi, K.6
Ulman, A.7
Cowman, M.8
Gross, R.A.9
-
7
-
-
58249088885
-
Enzyme immobilisation on electrospun polymer nanofibers: an overview
-
Wang Z.G., Wan L.S., Liu Z.M., Huang X.J., Xu Z.K. Enzyme immobilisation on electrospun polymer nanofibers: an overview. J. Mol. Catal. B: Enzyme 2009, 56:189-195.
-
(2009)
J. Mol. Catal. B: Enzyme
, vol.56
, pp. 189-195
-
-
Wang, Z.G.1
Wan, L.S.2
Liu, Z.M.3
Huang, X.J.4
Xu, Z.K.5
-
8
-
-
80053439206
-
Enzymes immobilised on carbon nanotubes
-
Feng W., Ji P. Enzymes immobilised on carbon nanotubes. Biotechnol. Adv. 2011, 29:889-895.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 889-895
-
-
Feng, W.1
Ji, P.2
-
9
-
-
0037174353
-
Entrapping enzyme in a functionalized nanoporous support
-
Lei C.H., Shin Y.S., Liu J., Ackerman E.J. Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 2002, 124:11242-11243.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11242-11243
-
-
Lei, C.H.1
Shin, Y.S.2
Liu, J.3
Ackerman, E.J.4
-
10
-
-
84865713587
-
Oriented immobilisation of glucose oxidase on graphene oxide
-
Zhou L.Y., Jiang Y.J., Gao J., Zhao X.Q., Ma L., Zhou Q.L. Oriented immobilisation of glucose oxidase on graphene oxide. Biochem. Eng. J. 2012, 69:28-31.
-
(2012)
Biochem. Eng. J.
, vol.69
, pp. 28-31
-
-
Zhou, L.Y.1
Jiang, Y.J.2
Gao, J.3
Zhao, X.Q.4
Ma, L.5
Zhou, Q.L.6
-
11
-
-
24944536670
-
2 nanotubes for biosensing
-
2 nanotubes for biosensing. Langmuir 2005, 21:8409-8413.
-
(2005)
Langmuir
, vol.21
, pp. 8409-8413
-
-
Liu, S.Q.1
Chen, A.C.2
-
12
-
-
23944453400
-
Silica nanotubes for lysozyme immobilisation
-
Ding H.M., Shao L., Liu R.J., Xiao Q.G., Chen J.F. Silica nanotubes for lysozyme immobilisation. J. Colloid Interface Sci. 2005, 290:102-106.
-
(2005)
J. Colloid Interface Sci.
, vol.290
, pp. 102-106
-
-
Ding, H.M.1
Shao, L.2
Liu, R.J.3
Xiao, Q.G.4
Chen, J.F.5
-
13
-
-
33846317483
-
Polymer-nanotube-enzyme composites as active antifouling films
-
Asuri P., Karajanagi S.S., Kane R.S., Dordick J.S. Polymer-nanotube-enzyme composites as active antifouling films. Small 2007, 3:50-53.
-
(2007)
Small
, vol.3
, pp. 50-53
-
-
Asuri, P.1
Karajanagi, S.S.2
Kane, R.S.3
Dordick, J.S.4
-
14
-
-
84890921484
-
Carbon nanotubes a review on structure and their interaction with proteins
-
Saifuddin N., Raziah A., Junizah A. Carbon nanotubes a review on structure and their interaction with proteins. J. Chem. 2012, 2013.
-
(2012)
J. Chem.
, vol.2013
-
-
Saifuddin, N.1
Raziah, A.2
Junizah, A.3
-
15
-
-
77957328836
-
Specific and reversible immobilisation of NADH oxidase on functionalized carbon nanotubes
-
Wang L., Wei L., Chen Y., Jiang R.R. Specific and reversible immobilisation of NADH oxidase on functionalized carbon nanotubes. J. Biotechnol. 2010, 150:57-63.
-
(2010)
J. Biotechnol.
, vol.150
, pp. 57-63
-
-
Wang, L.1
Wei, L.2
Chen, Y.3
Jiang, R.R.4
-
16
-
-
84887587488
-
Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties
-
Zhang C.D., Luo S.M., Chen W. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties. Talanta 2013, 113:142-147.
-
(2013)
Talanta
, vol.113
, pp. 142-147
-
-
Zhang, C.D.1
Luo, S.M.2
Chen, W.3
-
17
-
-
68349135419
-
Dispersions novel nanomaterial sensors and nanoconjugates based on carbon nanotubes
-
Capek I. Dispersions novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Adv. Colloid Interface Sci. 2009, 150:63-89.
-
(2009)
Adv. Colloid Interface Sci.
, vol.150
, pp. 63-89
-
-
Capek, I.1
-
18
-
-
28044433233
-
Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties
-
Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006, 496:141-145.
-
(2006)
Thin Solid Films
, vol.496
, pp. 141-145
-
-
Kasuga, T.1
-
19
-
-
73449109798
-
Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode
-
Dai H., Chi Y., Wu X., Wang Y., Wei M., Chen G. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron. 2010, 25:1414-1419.
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1414-1419
-
-
Dai, H.1
Chi, Y.2
Wu, X.3
Wang, Y.4
Wei, M.5
Chen, G.6
-
20
-
-
29244436870
-
Direct electrochemistry of myoglobin in titanate nanotubes film
-
Liu A., Wei M., Honma I., Zhou H. Direct electrochemistry of myoglobin in titanate nanotubes film. Anal. Chem. 2005, 77:8068-8074.
-
(2005)
Anal. Chem.
, vol.77
, pp. 8068-8074
-
-
Liu, A.1
Wei, M.2
Honma, I.3
Zhou, H.4
-
21
-
-
32244449257
-
Biosensing properties of titanatenanotube films: selective detection of dopamine in the presence of ascorbate and uric acid
-
Liu A., Wei M.D., Honma I., Zhou H. Biosensing properties of titanatenanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv. Funct. Mater. 2006, 16:371-376.
-
(2006)
Adv. Funct. Mater.
, vol.16
, pp. 371-376
-
-
Liu, A.1
Wei, M.D.2
Honma, I.3
Zhou, H.4
-
22
-
-
38949120095
-
A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter
-
Yang M., Wang J., Li H., Zheng J.G., Wu N.N. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 2008, 19.
-
(2008)
Nanotechnology
, vol.19
-
-
Yang, M.1
Wang, J.2
Li, H.3
Zheng, J.G.4
Wu, N.N.5
-
23
-
-
44449091389
-
2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method
-
2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method. Scripta Mater. 2008, 59:352-355.
-
(2008)
Scripta Mater.
, vol.59
, pp. 352-355
-
-
Geng, J.Q.1
Jiang, Z.Y.2
Wang, Y.B.3
Yang, D.4
-
24
-
-
0013119419
-
The structure of trititanate nanotubes
-
Chen Q., Du G., Zhang S., Peng L.M. The structure of trititanate nanotubes. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58:587-593.
-
(2002)
Acta Crystallogr., Sect. B: Struct. Sci.
, vol.58
, pp. 587-593
-
-
Chen, Q.1
Du, G.2
Zhang, S.3
Peng, L.M.4
-
26
-
-
23644433339
-
Titanate nanotubes and nanorods prepared from rutile powder
-
Lan Y., Gao X.P., Zhu H.Y., Zheng Z.F., Yan T.Y., Wu F., Ringer S.P., Song D. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005, 15:1310-1318.
-
(2005)
Adv. Funct. Mater.
, vol.15
, pp. 1310-1318
-
-
Lan, Y.1
Gao, X.P.2
Zhu, H.Y.3
Zheng, Z.F.4
Yan, T.Y.5
Wu, F.6
Ringer, S.P.7
Song, D.8
-
27
-
-
33644933997
-
Stability of aqueous suspensions of titanate nanotubes
-
Bavykin D.V., Friedrich J.M., Lapkin A.A., Walsh F.C. Stability of aqueous suspensions of titanate nanotubes. Chem. Mater. 2006, 18:1124-1129.
-
(2006)
Chem. Mater.
, vol.18
, pp. 1124-1129
-
-
Bavykin, D.V.1
Friedrich, J.M.2
Lapkin, A.A.3
Walsh, F.C.4
-
28
-
-
33644539854
-
2 with different post-treatments
-
2 with different post-treatments. Chem. Mater. 2006, 18:367-373.
-
(2006)
Chem. Mater.
, vol.18
, pp. 367-373
-
-
Tsai, C.C.1
Teng, H.2
-
29
-
-
77149148800
-
Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy
-
Kim S.J., Yun Y.U., Oh H.J., Hong S.H., Roberts C.A., Routray K., Wachs I.E. Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy. J. Phys. Chem. Lett. 2009, 1:130-135.
-
(2009)
J. Phys. Chem. Lett.
, vol.1
, pp. 130-135
-
-
Kim, S.J.1
Yun, Y.U.2
Oh, H.J.3
Hong, S.H.4
Roberts, C.A.5
Routray, K.6
Wachs, I.E.7
-
30
-
-
64349088770
-
Crystal structures of titanate nanotubes: a Raman scattering study
-
Gao T., Fjellvåg H., Norby P. Crystal structures of titanate nanotubes: a Raman scattering study. Inorg. Chem. 2009, 48:1423-1432.
-
(2009)
Inorg. Chem.
, vol.48
, pp. 1423-1432
-
-
Gao, T.1
Fjellvåg, H.2
Norby, P.3
-
31
-
-
84873687744
-
Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity
-
Kitano M., Wada E., Nakajima K., Hayashi S., Miyazaki S., Kobayashi H., Hara M. Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity. Chem. Mater. 2013, 25:385-393.
-
(2013)
Chem. Mater.
, vol.25
, pp. 385-393
-
-
Kitano, M.1
Wada, E.2
Nakajima, K.3
Hayashi, S.4
Miyazaki, S.5
Kobayashi, H.6
Hara, M.7
-
32
-
-
0037495984
-
Synthesis and characterization of ion-exchangeable titanate nanotubes
-
Sun X.M., Li Y.D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 2003, 9:2229-2238.
-
(2003)
Chem. Eur. J.
, vol.9
, pp. 2229-2238
-
-
Sun, X.M.1
Li, Y.D.2
-
33
-
-
0037015278
-
Trititanate nanotubes made via a single alkali treatment
-
Chen Q., Zhou W., Du G.H., Peng L.M. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14:1208-1211.
-
(2002)
Adv. Mater.
, vol.14
, pp. 1208-1211
-
-
Chen, Q.1
Zhou, W.2
Du, G.H.3
Peng, L.M.4
-
34
-
-
0032770054
-
The application of alkanethiol self-assembled monolayers to enzyme electrodes
-
Gooding J.J., Hibbert D.B. The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends Anal. Chem. 1999, 18:525-533.
-
(1999)
Trends Anal. Chem.
, vol.18
, pp. 525-533
-
-
Gooding, J.J.1
Hibbert, D.B.2
-
35
-
-
0037411503
-
Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors
-
Delvaux M., Demoustier-Champagne S. Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 2003, 18:943-951.
-
(2003)
Biosens. Bioelectron.
, vol.18
, pp. 943-951
-
-
Delvaux, M.1
Demoustier-Champagne, S.2
-
36
-
-
84873411955
-
Enhanced stability of catalase covalently immobilised on functionalized titania submicrospheres
-
Wu H., Liang Y.P., Shi J.F., Wang X.L., Yang D., Jiang Z.Y. Enhanced stability of catalase covalently immobilised on functionalized titania submicrospheres. Mater. Sci. Eng. C: Biol. Sci. 2013, 33:1438-1445.
-
(2013)
Mater. Sci. Eng. C: Biol. Sci.
, vol.33
, pp. 1438-1445
-
-
Wu, H.1
Liang, Y.P.2
Shi, J.F.3
Wang, X.L.4
Yang, D.5
Jiang, Z.Y.6
-
37
-
-
0000834508
-
Protonated pentatitanate: preparation, characterizations and cation intercalation
-
Sasaki T., Komatsu Y., Fujiki Y. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chem. Mater. 1992, 4:894-899.
-
(1992)
Chem. Mater.
, vol.4
, pp. 894-899
-
-
Sasaki, T.1
Komatsu, Y.2
Fujiki, Y.3
-
38
-
-
79960266556
-
Titanate nanotubes-embedded chitosan nanocomposite membranes with high isopropanol dehydration performance
-
Liu G.X., Yang D., Zhu Y.Y., Ma J., Nie M.C., Jiang Z.Y. Titanate nanotubes-embedded chitosan nanocomposite membranes with high isopropanol dehydration performance. Chem. Eng. Sci. 2011, 66:4221-4228.
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 4221-4228
-
-
Liu, G.X.1
Yang, D.2
Zhu, Y.Y.3
Ma, J.4
Nie, M.C.5
Jiang, Z.Y.6
-
39
-
-
0037687576
-
Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions
-
Kolhe P., Kannan R.M. Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 2003, 4:173-180.
-
(2003)
Biomacromolecules
, vol.4
, pp. 173-180
-
-
Kolhe, P.1
Kannan, R.M.2
-
41
-
-
79957973446
-
Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer
-
Zhang L., Shi J.F., Jiang Z.Y., Jiang Y.J., Meng R.J., Zhu Y.Y., Liang Y.P., Zheng Y. Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS Appl. Mater. Interfaces 2011, 3:597-605.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 597-605
-
-
Zhang, L.1
Shi, J.F.2
Jiang, Z.Y.3
Jiang, Y.J.4
Meng, R.J.5
Zhu, Y.Y.6
Liang, Y.P.7
Zheng, Y.8
-
42
-
-
17144417722
-
Formation, structure, and stability of titanate nanotubes and their proton conductivity
-
Thorne A., Kruth A., Tunstall D., Irvine J.T., Zhou W. Formation, structure, and stability of titanate nanotubes and their proton conductivity. J. Phys. Chem. B. 2005, 109:5439-5444.
-
(2005)
J. Phys. Chem. B.
, vol.109
, pp. 5439-5444
-
-
Thorne, A.1
Kruth, A.2
Tunstall, D.3
Irvine, J.T.4
Zhou, W.5
-
43
-
-
33645753787
-
Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization
-
Wang Z.G., Xu Z.K., Wan L.S., Wu J., Innocent C., Seta P. Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol. Rapid Commun. 2006, 27:516-521.
-
(2006)
Macromol. Rapid Commun.
, vol.27
, pp. 516-521
-
-
Wang, Z.G.1
Xu, Z.K.2
Wan, L.S.3
Wu, J.4
Innocent, C.5
Seta, P.6
-
44
-
-
84877586092
-
Catechol modification and covalent immobilization of catalase on titania submicrospheres
-
Wu H., Zhang C.H., Liang Y.P., Shi J.F., Wang X.L., Jiang Z.Y. Catechol modification and covalent immobilization of catalase on titania submicrospheres. J. Mol. Catal. B: Enzym. 2013, 92:44-50.
-
(2013)
J. Mol. Catal. B: Enzym.
, vol.92
, pp. 44-50
-
-
Wu, H.1
Zhang, C.H.2
Liang, Y.P.3
Shi, J.F.4
Wang, X.L.5
Jiang, Z.Y.6
-
45
-
-
83655201265
-
Immobilisation of catalase via adsorption onto metal-chelated affinity cryogels
-
Tüzmen N., Kalburcu T., Denizli A. Immobilisation of catalase via adsorption onto metal-chelated affinity cryogels. Process Biochem. 2012, 47:26-33.
-
(2012)
Process Biochem.
, vol.47
, pp. 26-33
-
-
Tüzmen, N.1
Kalburcu, T.2
Denizli, A.3
-
46
-
-
0038293078
-
Immobilisation of catalase into chemically crosslinked chitosan beads
-
Akkuş Çetinus Ş., Nursevin Öztop H. Immobilisation of catalase into chemically crosslinked chitosan beads. Enzyme Microb. Technol. 2003, 32:889-894.
-
(2003)
Enzyme Microb. Technol.
, vol.32
, pp. 889-894
-
-
Akkuş Çetinus, Ş.1
Nursevin Öztop, H.2
-
47
-
-
16244379842
-
Enzyme immobilisation in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases
-
DeLouise L.A., Miller B.L. Enzyme immobilisation in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases. Anal. Chem. 2005, 77:1950-1956.
-
(2005)
Anal. Chem.
, vol.77
, pp. 1950-1956
-
-
DeLouise, L.A.1
Miller, B.L.2
-
48
-
-
34447320455
-
Covalent immobilisation of redox enzyme on electrospun nonwoven poly (acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study
-
Wang Z.G., Ke B.B., Xu Z.K. Covalent immobilisation of redox enzyme on electrospun nonwoven poly (acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol. Bioeng. 2007, 97:708-720.
-
(2007)
Biotechnol. Bioeng.
, vol.97
, pp. 708-720
-
-
Wang, Z.G.1
Ke, B.B.2
Xu, Z.K.3
-
49
-
-
77951978040
-
Immobilisation of catalase onto Eupergit C and its characterization
-
Alptekin Ö., Tükel S.S., Yildirim D., Alagöz D. Immobilisation of catalase onto Eupergit C and its characterization. J. Mol. Catal. B: Enzyme 2010, 64:177-183.
-
(2010)
J. Mol. Catal. B: Enzyme
, vol.64
, pp. 177-183
-
-
Alptekin, Ö.1
Tükel, S.S.2
Yildirim, D.3
Alagöz, D.4
-
50
-
-
4344622619
-
Immobilization and kinetics of catalase onto magnesium silicate
-
Tukel S.S., Alptekin O. Immobilization and kinetics of catalase onto magnesium silicate. Process Biochem. 2004, 39:2149-2155.
-
(2004)
Process Biochem.
, vol.39
, pp. 2149-2155
-
-
Tukel, S.S.1
Alptekin, O.2
-
51
-
-
39049100933
-
Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization
-
Wan L.S., Ke B.B., Xu Z.K. Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme Microb. Technol. 2008, 42:332-339.
-
(2008)
Enzyme Microb. Technol.
, vol.42
, pp. 332-339
-
-
Wan, L.S.1
Ke, B.B.2
Xu, Z.K.3
|