메뉴 건너뛰기




Volumn 98, Issue , 2012, Pages 4-11

A novel locally regularized automatic construction method for RBF neural models

Author keywords

Center selection; Leave one out (LOO) cross validation; Linear in the parameters model; Radial basis function (RBF) neural networks; Regularization

Indexed keywords

ALTERNATIVE APPROACH; AUTOMATIC CONSTRUCTION; AUTOMATIC CONSTRUCTION METHODS; CENTER SELECTION; CROSS VALIDATION; ERROR CRITERION; FAST RECURSIVE ALGORITHMS; LEAVE-ONE-OUT; MODEL PARAMETERS; NETWORK CONSTRUCTION; NETWORK SIZE; NEURAL MODELS; ORIGINAL MODEL; ORTHOGONAL LEAST SQUARES; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; REGULARIZATION; TERMINATION CRITERIA;

EID: 84867197544     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.05.045     Document Type: Article
Times cited : (13)

References (36)
  • 1
    • 61849155682 scopus 로고    scopus 로고
    • Three-phase strategy for the OSD learning method in RBF neural networks
    • Montazer G.A., Sabzevari R., Ghorbani F. Three-phase strategy for the OSD learning method in RBF neural networks. Neurocomputing 2009, 72:1797-1802.
    • (2009) Neurocomputing , vol.72 , pp. 1797-1802
    • Montazer, G.A.1    Sabzevari, R.2    Ghorbani, F.3
  • 3
    • 0035427399 scopus 로고    scopus 로고
    • Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks
    • Li Y., Sundararaian N., Saratchandran P. Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks. Automatica 2001, 37:1293-1301.
    • (2001) Automatica , vol.37 , pp. 1293-1301
    • Li, Y.1    Sundararaian, N.2    Saratchandran, P.3
  • 4
    • 0033640619 scopus 로고    scopus 로고
    • Output feedback control of nonlinear systems using RBF neural networks
    • Seshagiri S., Khalil H.K. Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans. Neural Networks 2000, 11:69-79.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 69-79
    • Seshagiri, S.1    Khalil, H.K.2
  • 5
    • 0030192825 scopus 로고    scopus 로고
    • Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    • Zhu Q.M., Billings S.A. Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. Int. J. Control 1996, 64:871-886.
    • (1996) Int. J. Control , vol.64 , pp. 871-886
    • Zhu, Q.M.1    Billings, S.A.2
  • 6
    • 0028465208 scopus 로고
    • Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
    • Elanayar V.T.S., Shin Y.C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Networks 1994, 5:594-603.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 594-603
    • Elanayar, V.T.S.1    Shin, Y.C.2
  • 7
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: statistical consistency, convergence rates, and receptive field size
    • Xu L., Krzyzak A., Yuille A. On radial basis function nets and kernel regression: statistical consistency, convergence rates, and receptive field size. Neural Networks 1994, 7(4):609-628.
    • (1994) Neural Networks , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 8
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • Pedrycz W. Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Trans. Neural Networks 1998, 9:601-612.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 601-612
    • Pedrycz, W.1
  • 9
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 10
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 12
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
    • Huang G.-B., Saratchandran P., Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. Cybern. B: Cybern. 2004, 34(6):2284-2292.
    • (2004) Cybern. B: Cybern. , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 13
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.-B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans. Neural Networks 2005, 16(1):57-67.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 14
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centres with recursive orthogonal least squares training
    • Barry Gomm J., Yu D. Selecting radial basis function network centres with recursive orthogonal least squares training. IEEE Trans. Neural Networks 2000, 11(2):306-314.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.2 , pp. 306-314
    • Barry Gomm, J.1    Yu, D.2
  • 15
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to nonlinear system identification
    • Chen S., Billings S.A., Luo W. Orthogonal least squares methods and their application to nonlinear system identification. Int. J. Control 1989, 50(5):1873-1896.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 16
  • 17
    • 64049119709 scopus 로고    scopus 로고
    • Construction of tunable radial basis function networks using orthogonal forward selection
    • Chen S., Hong X., Luk B.L., Harris C.J. Construction of tunable radial basis function networks using orthogonal forward selection. IEEE Trans. Syst. Man Cybern. B: Cybern. 2009, 39(2):457-466.
    • (2009) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.39 , Issue.2 , pp. 457-466
    • Chen, S.1    Hong, X.2    Luk, B.L.3    Harris, C.J.4
  • 18
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • Li K., Peng J., Irwin G.W. A fast nonlinear model identification method. IEEE Trans. Autom. Control 2005, 50(8):1211-1216.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.2    Irwin, G.W.3
  • 19
    • 33847421698 scopus 로고    scopus 로고
    • A novel continuous forward algorithm for RBF neural modelling
    • Peng J., Li K., Irwin G.W. A novel continuous forward algorithm for RBF neural modelling. IEEE Trans. Autom. Control 2007, 52(1):117-122.
    • (2007) IEEE Trans. Autom. Control , vol.52 , Issue.1 , pp. 117-122
    • Peng, J.1    Li, K.2    Irwin, G.W.3
  • 20
    • 0022417790 scopus 로고
    • Computational vision and regularization theory
    • Poggio T., Torre V., Koch C. Computational vision and regularization theory. Nature 1985, 317:314-319.
    • (1985) Nature , vol.317 , pp. 314-319
    • Poggio, T.1    Torre, V.2    Koch, C.3
  • 21
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 22
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69(4-6):559-585.
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559-585
    • Chen, S.1
  • 23
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19(6):716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 24
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS static
    • Hong X., Sharkey P.M., Warwick K. Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS static. IEE Proc. Control Theory Appl. 2003, 150(3):245-254.
    • (2003) IEE Proc. Control Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 25
    • 33847074971 scopus 로고    scopus 로고
    • Backward elimination model construction for regression and classification using leave one out criteria
    • Hong X., Mitchell R.J. Backward elimination model construction for regression and classification using leave one out criteria. Int. J. Syst. Sci. 2007, 38(2):101-113.
    • (2007) Int. J. Syst. Sci. , vol.38 , Issue.2 , pp. 101-113
    • Hong, X.1    Mitchell, R.J.2
  • 26
    • 38349160227 scopus 로고    scopus 로고
    • A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    • Hong X., Chen S., Harris C.J. A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate. Int. J. Syst. Sci. 2008, 39(2):119-125.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.2 , pp. 119-125
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 27
    • 0000629975 scopus 로고
    • Cross validatory choice and assessment of statistical predictions
    • Stone M. Cross validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 1974, 36(1):117-147.
    • (1974) J. R. Stat. Soc. , vol.36 , Issue.1 , pp. 117-147
    • Stone, M.1
  • 28
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C.J., Sharkey P.M. Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B: Cybern. 2004, 34(2):898-911.
    • (2004) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 29
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 2004, 17:1467-1475.
    • (2004) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 30
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • Li K., Peng J., Bai E-W. A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 2006, 42(7):1189-1197.
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Peng, J.2    Bai, E.-W.3
  • 31
    • 47749106824 scopus 로고    scopus 로고
    • Model selection approaches for non-linear system identification: a review
    • Hong X., Mitchell R.J., Chen S., Harris C.J., Li K., Irwin G.W. Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci. 2008, 39(10):925-946.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.10 , pp. 925-946
    • Hong, X.1    Mitchell, R.J.2    Chen, S.3    Harris, C.J.4    Li, K.5    Irwin, G.W.6
  • 32
    • 0003732335 scopus 로고
    • Classical and Modern Regression with Applications
    • PWS-KENT, Boston
    • R.H. Myers. Classical and Modern Regression with Applications, PWS-KENT, Boston, 1990.
    • (1990)
    • Myers, R.H.1
  • 33
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.T. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.T.1
  • 34
    • 0001025418 scopus 로고
    • Bayesian Interpolation
    • MacKay D.J.C. Neural Comput. 1992, 4(3):415-447. Bayesian Interpolation.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 35
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K.S., Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1990, 1(1):4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 36
    • 0037359808 scopus 로고    scopus 로고
    • A parameter optimization method for radial basis function type models
    • Peng H., Ozaki T., Haggan-Ozaki V., Toyoda Y. A parameter optimization method for radial basis function type models. IEEE Trans. Neural Networks 2003, 14(2):432-438.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.2 , pp. 432-438
    • Peng, H.1    Ozaki, T.2    Haggan-Ozaki, V.3    Toyoda, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.