메뉴 건너뛰기




Volumn 45, Issue 1, 2014, Pages 34-42

A hybrid intelligent system for diagnosing microalbuminuria in type 2 diabetes patients without having to measure urinary albumin

Author keywords

Classification; Diabetes type 2; Expert based system; Fuzzy rule induction; Microalbuminuria; Particle swarm optimization; Statistical feature extraction

Indexed keywords

CARDIOVASCULAR MORTALITY; EXPERT-BASED SYSTEM; FUZZY CLASSIFIER SYSTEMS; FUZZY RULE INDUCTION; HYBRID INTELLIGENT SYSTEM; MICROALBUMINURIA; MULTIPLE LOGISTIC REGRESSION; STATISTICAL FEATURE EXTRACTIONS;

EID: 84890213426     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2013.11.006     Document Type: Article
Times cited : (42)

References (72)
  • 2
    • 33845338724 scopus 로고    scopus 로고
    • Projections of global mortality and burden of disease from 2002 to 2030
    • Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3:e442.
    • (2006) PLoS Med. , vol.3
    • Mathers, C.D.1    Loncar, D.2
  • 3
    • 84878373076 scopus 로고    scopus 로고
    • Type 2 diabetes complications
    • Schlienger J.L. Type 2 diabetes complications. Presse Med. 2013, 42:839-848.
    • (2013) Presse Med. , vol.42 , pp. 839-848
    • Schlienger, J.L.1
  • 6
    • 0032987258 scopus 로고    scopus 로고
    • Nephropathy in type 2 diabetes
    • Ritz E. Nephropathy in type 2 diabetes. J. Intern. Med. 1999, 245:111-126.
    • (1999) J. Intern. Med. , vol.245 , pp. 111-126
    • Ritz, E.1
  • 7
    • 0027519531 scopus 로고
    • Epidemiology, development and treatment of end-stage renal failure in type 2 (non-insulin-dependent) diabetic patients in Europe
    • Raine A.E. Epidemiology, development and treatment of end-stage renal failure in type 2 (non-insulin-dependent) diabetic patients in Europe. Diabetologia 1993, 36:1099-1104.
    • (1993) Diabetologia , vol.36 , pp. 1099-1104
    • Raine, A.E.1
  • 8
    • 33646771273 scopus 로고    scopus 로고
    • Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective
    • Parving H.H., Lewis J.B., Ravid M., Remuzzi G., Hunsicker L.G. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 2006, 69:2057-2063.
    • (2006) Kidney Int. , vol.69 , pp. 2057-2063
    • Parving, H.H.1    Lewis, J.B.2    Ravid, M.3    Remuzzi, G.4    Hunsicker, L.G.5
  • 11
    • 0142123310 scopus 로고    scopus 로고
    • Nonlinear systems in medicine
    • Higgins J.P. Nonlinear systems in medicine. Yale J. Biol. Med. 2002, 75:247-260.
    • (2002) Yale J. Biol. Med. , vol.75 , pp. 247-260
    • Higgins, J.P.1
  • 13
    • 84890173374 scopus 로고    scopus 로고
    • International Diabetes Federation, Hallado en:
    • D. Atlas, International Diabetes Federation, Hallado en:, 2000. http://www.idf.org/diabetesatlas/5e/es/prologo.
    • (2000)
    • Atlas, D.1
  • 14
    • 57949103370 scopus 로고    scopus 로고
    • Prevalence of macro- and microvascular complications among patients with type 2 diabetes in Iran: a systematic review
    • Amini M., Parvaresh E. Prevalence of macro- and microvascular complications among patients with type 2 diabetes in Iran: a systematic review. Diabet. Res. Clin. Pract. 2009, 83:18-25.
    • (2009) Diabet. Res. Clin. Pract. , vol.83 , pp. 18-25
    • Amini, M.1    Parvaresh, E.2
  • 15
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • Lavrac N. Selected techniques for data mining in medicine. Artif. Intell. Med. 1999, 16:3-23.
    • (1999) Artif. Intell. Med. , vol.16 , pp. 3-23
    • Lavrac, N.1
  • 17
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • Babuška R., Verbruggen H. Neuro-fuzzy methods for nonlinear system identification. Annu. Rev. Control 2003, 27:73-85.
    • (2003) Annu. Rev. Control , vol.27 , pp. 73-85
    • Babuška, R.1    Verbruggen, H.2
  • 18
    • 84890242095 scopus 로고    scopus 로고
    • Data Mining Techniques for the Life Sciences, Humana Press
    • Data Mining Techniques for the Life Sciences, Humana Press, 2010.
    • (2010)
  • 19
    • 73649100445 scopus 로고    scopus 로고
    • Comparison of different Neuro-Fuzzy Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images
    • A. Lorenz, M. Blum, H. Ermert, T. Senge, Comparison of different Neuro-Fuzzy Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images, vol. 1202, 1997, pp. 1201-1204.
    • (1997) , vol.1202 , pp. 1201-1204
    • Lorenz, A.1    Blum, M.2    Ermert, H.3    Senge, T.4
  • 20
    • 16544380980 scopus 로고    scopus 로고
    • A neuro-fuzzy approach to classification of ECG signals for ischemic heart disease diagnosis
    • in: AMIA. Annual Symposium Proceedings/AMIA Symposium
    • V. Neagoe, I. Iatan, S. Grunwald, A neuro-fuzzy approach to classification of ECG signals for ischemic heart disease diagnosis, in: AMIA. Annual Symposium Proceedings/AMIA Symposium, 2003, pp. 494-498.
    • (2003) , pp. 494-498
    • Neagoe, V.1    Iatan, I.2    Grunwald, S.3
  • 23
    • 76849086927 scopus 로고    scopus 로고
    • Designing fuzzy-rule-based systems using continuous ant-colony optimization,
    • Juang C.-F., Chang P.-H. Designing fuzzy-rule-based systems using continuous ant-colony optimization,. IEEE Trans. Fuzzy Syst. 2010, 18:138-149.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , pp. 138-149
    • Juang, C.-F.1    Chang, P.-H.2
  • 25
    • 84886563124 scopus 로고    scopus 로고
    • Particle swarm optimization
    • in: C. Sammut, G. Webb (ed.), Encyclopedia of Machine Learning, Springer
    • J. Kennedy, Particle swarm optimization, in: C. Sammut, G. Webb (ed.), Encyclopedia of Machine Learning, Springer, 2010, pp. 760-766.
    • (2010) , pp. 760-766
    • Kennedy, J.1
  • 27
    • 65349193361 scopus 로고    scopus 로고
    • Resolving superimposed MUAPs using particle swarm optimization
    • Marateb H.R., McGill K.C. Resolving superimposed MUAPs using particle swarm optimization. IEEE Trans. Bio-med. Eng. 2009, 56:916-919.
    • (2009) IEEE Trans. Bio-med. Eng. , vol.56 , pp. 916-919
    • Marateb, H.R.1    McGill, K.C.2
  • 28
    • 44349195551 scopus 로고    scopus 로고
    • Analysis of the publications on the applications of particle swarm optimisation
    • Poli R. Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 2008:3.
    • (2008) J. Artif. Evol. Appl. , vol.2008 , pp. 3
    • Poli, R.1
  • 29
    • 27944448086 scopus 로고    scopus 로고
    • A color image quantization algorithm based on particle swarm optimization
    • Omran M.G., Engelbrecht A.P., Salman A. A color image quantization algorithm based on particle swarm optimization. Informatica (Ljubljana) 2005, 29:261.
    • (2005) Informatica (Ljubljana) , vol.29 , pp. 261
    • Omran, M.G.1    Engelbrecht, A.P.2    Salman, A.3
  • 30
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • van den Bergh F., Engelbrecht A.P. A study of particle swarm optimization particle trajectories. Inf. Sci. 2006, 176:937-971.
    • (2006) Inf. Sci. , vol.176 , pp. 937-971
    • van den Bergh, F.1    Engelbrecht, A.P.2
  • 32
    • 39049136085 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
    • Banks A., Vincent J., Anyakoha C. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 2007, 7:109-124.
    • (2007) Nat. Comput. , vol.7 , pp. 109-124
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 33
    • 0033666935 scopus 로고    scopus 로고
    • Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
    • IEEE
    • R.C. Eberhart, Y. Shi, Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, IEEE, 2000, pp. 84-88.
    • (2000) , pp. 84-88
    • Eberhart, Y.S.1
  • 34
    • 84869781838 scopus 로고    scopus 로고
    • From theory to practice in particle swarm optimization
    • Springer, Berlin, Heidelberg, B. Panigrahi, Y. Shi, M.-H. Lim (Eds.)
    • Clerc M. From theory to practice in particle swarm optimization. Handbook of Swarm Intelligence 2010, 3-36. Springer, Berlin, Heidelberg. B. Panigrahi, Y. Shi, M.-H. Lim (Eds.).
    • (2010) Handbook of Swarm Intelligence , pp. 3-36
    • Clerc, M.1
  • 35
    • 84873033636 scopus 로고    scopus 로고
    • A new method for identifying bivariate differential expression in high dimensional microarray data using quadratic discriminant analysis
    • Arevalillo J.M., Navarro H. A new method for identifying bivariate differential expression in high dimensional microarray data using quadratic discriminant analysis. BMC Bioinf. 2011, 12(Suppl 12):S6.
    • (2011) BMC Bioinf. , vol.12 , Issue.SUPPL 12
    • Arevalillo, J.M.1    Navarro, H.2
  • 36
    • 0030044940 scopus 로고    scopus 로고
    • Implementation of linear and quadratic discriminant analysis incorporating costs of misclassification
    • Grouven U., Bergel F., Schultz A. Implementation of linear and quadratic discriminant analysis incorporating costs of misclassification. Comput. Methods Programs Biomed. 1996, 49:55-60.
    • (1996) Comput. Methods Programs Biomed. , vol.49 , pp. 55-60
    • Grouven, U.1    Bergel, F.2    Schultz, A.3
  • 39
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu K.-P., Wang S.-D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognition 2009, 42:710-717.
    • (2009) Pattern Recognition , vol.42 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 40
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimaloptimization
    • MIT Press
    • Platt J.C. Fast training of support vector machines using sequential minimaloptimization. Advances in Kernel Methods---Support Vector Learning 1999, 185-208. MIT Press.
    • (1999) Advances in Kernel Methods---Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 41
    • 77956220369 scopus 로고    scopus 로고
    • Kernel density estimation via diffusion
    • Botev Z.I., Grotowski J.F., Kroese D.P. Kernel density estimation via diffusion. Ann. Stat. 2010, 38:2916-2957.
    • (2010) Ann. Stat. , vol.38 , pp. 2916-2957
    • Botev, Z.I.1    Grotowski, J.F.2    Kroese, D.P.3
  • 42
    • 84859144390 scopus 로고    scopus 로고
    • Comprehensive decision tree models in bioinformatics
    • Stiglic G., Kocbek S., Pernek I., Kokol P. Comprehensive decision tree models in bioinformatics. PloS ONE 2012, 7:e33812.
    • (2012) PloS ONE , vol.7
    • Stiglic, G.1    Kocbek, S.2    Pernek, I.3    Kokol, P.4
  • 43
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 44
    • 8344282137 scopus 로고
    • C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993, Machine Learning
    • S. Salzberg, C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993, Machine Learning, vol. 16, 1994, pp. 235-240.
    • (1994) , vol.16 , pp. 235-240
    • Salzberg, S.1
  • 45
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23:665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 47
    • 33749142135 scopus 로고    scopus 로고
    • A fuzzy extension of the silhouette width criterion for cluster analysis
    • Campello R.J.G.B., Hruschka E.R. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 2006, 157:2858-2875.
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 2858-2875
    • Campello, R.J.G.B.1    Hruschka, E.R.2
  • 48
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intell. Data Anal. 1997, 1:131-156.
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 49
    • 57849163767 scopus 로고    scopus 로고
    • Linear versus logistic regression when the dependent variable is a dichotomy
    • Hellevik O. Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quantity 2009, 43:59-74.
    • (2009) Qual. Quantity , vol.43 , pp. 59-74
    • Hellevik, O.1
  • 50
    • 0035350692 scopus 로고    scopus 로고
    • Comparison of logistic regression and linear regression in modeling percentage data
    • Zhao L., Chen Y., Schaffner D.W. Comparison of logistic regression and linear regression in modeling percentage data. Appl. Environ. Microbiol. 2001, 67:2129-2135.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 2129-2135
    • Zhao, L.1    Chen, Y.2    Schaffner, D.W.3
  • 52
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 53
    • 67649142447 scopus 로고    scopus 로고
    • From Lasso Regression to Feature Vector Machine
    • F. Li, Y. Yang, E.P. Xing, From Lasso Regression to Feature Vector Machine, 2005, pp. 779-786.
    • (2005) , pp. 779-786
    • Li, F.1    Yang, Y.2    Xing, E.P.3
  • 55
    • 85009097547 scopus 로고    scopus 로고
    • Performance assessment
    • in: Statistical Pattern Recognition, John Wiley & Sons, Ltd.
    • A.R. Webb, K.D. Copsey, Performance assessment, in: Statistical Pattern Recognition, John Wiley & Sons, Ltd., 2011, pp. 404-432.
    • (2011) , pp. 404-432
    • Webb, A.R.1    Copsey, K.D.2
  • 58
    • 0004080666 scopus 로고
    • Signal Detection Theory and {ROC} Analysis
    • J.P. Egan, Signal Detection Theory and {ROC} Analysis, 1975.
    • (1975)
    • Egan, J.P.1
  • 59
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10:1895-1923.
    • (1998) Neural Comput. , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 60
    • 84937275232 scopus 로고    scopus 로고
    • Assessing agreement on classification tasks: the Kappa statistic
    • Carletta J. Assessing agreement on classification tasks: the Kappa statistic. Comput. Linguist. 1996, 22:249-254.
    • (1996) Comput. Linguist. , vol.22 , pp. 249-254
    • Carletta, J.1
  • 61
    • 3242735611 scopus 로고    scopus 로고
    • American Diabetes Association, Alexandria, VA, American Diabetes Association
    • American Diabetes Association American Diabetes Association Complete Guide to Diabetes 2005, American Diabetes Association, Alexandria, VA. 4th ed.
    • (2005) American Diabetes Association Complete Guide to Diabetes
  • 62
    • 0036212036 scopus 로고    scopus 로고
    • Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race
    • Mattix H.J., Hsu C.Y., Shaykevich S., Curhan G. Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J. Am. Soc. Nephrol.: JASN 2002, 13:1034-1039.
    • (2002) J. Am. Soc. Nephrol.: JASN , vol.13 , pp. 1034-1039
    • Mattix, H.J.1    Hsu, C.Y.2    Shaykevich, S.3    Curhan, G.4
  • 63
    • 0032911972 scopus 로고    scopus 로고
    • Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation
    • Keane W.F., Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am. J. Kidney Dis.: Off. J. Natl. Kidney Found. 1999, 33:1004-1010.
    • (1999) Am. J. Kidney Dis.: Off. J. Natl. Kidney Found. , vol.33 , pp. 1004-1010
    • Keane, W.F.1    Eknoyan, G.2
  • 64
    • 84890177993 scopus 로고    scopus 로고
    • A k-sample slippage test for an extreme population
    • in: Selected Papers of Frederick Mosteller, Springer
    • F. Mosteller, A k-sample slippage test for an extreme population, in: Selected Papers of Frederick Mosteller, Springer, 2006, pp. 101-109.
    • (2006) , pp. 101-109
    • Mosteller, F.1
  • 66
    • 0027999494 scopus 로고
    • Systolic blood pressure relates to the rate of progression of albuminuria in NIDDM
    • Schmitz A., Vaeth M., Mogensen C. Systolic blood pressure relates to the rate of progression of albuminuria in NIDDM. Diabetologia 1994, 37:1251-1258.
    • (1994) Diabetologia , vol.37 , pp. 1251-1258
    • Schmitz, A.1    Vaeth, M.2    Mogensen, C.3
  • 67
    • 84890217320 scopus 로고    scopus 로고
    • W.H. Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation, Geneva, World Health Organization
    • W.H. Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation, Geneva, World Health Organization, 2006, pp. 1-50.
    • (2006) , pp. 1-50
  • 68
    • 77950343243 scopus 로고    scopus 로고
    • Type 2 diabetes
    • (ITC31-15; quiz ITC316)
    • Vijan S. Type 2 diabetes. Ann. Intern. Med. 2010, 152. (ITC31-15; quiz ITC316).
    • (2010) Ann. Intern. Med. , vol.152
    • Vijan, S.1
  • 69
    • 0031851293 scopus 로고    scopus 로고
    • Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus
    • Alberti K.G.M.M., Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Diabet. Med. 1998, 15:539-553.
    • (1998) Diabet. Med. , vol.15 , pp. 539-553
    • Alberti, K.G.M.M.1    Zimmet, P.2
  • 70
    • 77953064009 scopus 로고    scopus 로고
    • Detecting undiagnosed type 2 diabetes: family history as a risk factor and screening tool
    • Valdez R. Detecting undiagnosed type 2 diabetes: family history as a risk factor and screening tool. J. Diabet. Sci. Technol. 2009, 3:722-726.
    • (2009) J. Diabet. Sci. Technol. , vol.3 , pp. 722-726
    • Valdez, R.1
  • 72
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 1999, 16:149-169.
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.