메뉴 건너뛰기




Volumn 25, Issue 1, 2014, Pages 88-97

An organizational schema for epidemiologic causal effects

Author keywords

[No Author keywords available]

Indexed keywords

ATTRIBUTABLE RISK; EPIDEMIOLOGY; MEDICAL RESEARCH; NATURAL POPULATION; PREVALENCE; PRIORITY JOURNAL; REVIEW;

EID: 84890069904     PISSN: 10443983     EISSN: 15315487     Source Type: Journal    
DOI: 10.1097/EDE.0000000000000005     Document Type: Review
Times cited : (13)

References (53)
  • 1
    • 0003755607 scopus 로고    scopus 로고
    • 4th ed. Philadelphia, Pa: Elsevier/ Saunders
    • Gordis L. Epidemiology. 4th ed. Philadelphia, Pa: Elsevier/Saunders, 2009
    • (2009) Epidemiology
    • Gordis, L.1
  • 3
    • 1642443338 scopus 로고    scopus 로고
    • A definition of causal effect for epidemiological research
    • Hernán MA. A definition of causal effect for epidemiological research. J Epidemiol Community Health. 2004;58:265-271
    • (2004) J Epidemiol Community Health , vol.58 , pp. 265-271
    • Hernán, M.A.1
  • 6
    • 0004292914 scopus 로고    scopus 로고
    • 3rd Ed. Philadelphia Pa: Wolters Kluwer HealthLippincott Williams & Wilkins
    • Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia, Pa: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008
    • (2008) Modern Epidemiology
    • Rothman, K.J.1    Greenland, S.2    Lash, T.L.3
  • 8
    • 77955076625 scopus 로고    scopus 로고
    • Redundant causation from a sufficient cause perspective
    • Gatto NM, Campbell UB. Redundant causation from a sufficient cause perspective. Epidemiol Perspect Innov. 2010;7:5
    • (2010) Epidemiol Perspect Innov , vol.7 , pp. 5
    • Gatto, N.M.1    Campbell, U.B.2
  • 9
    • 0024229198 scopus 로고
    • Conceptual problems in the definition and interpretation of attributable fractions
    • Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128:1185-1197
    • (1988) Am J Epidemiol , vol.128 , pp. 1185-1197
    • Greenland, S.1    Robins, J.M.2
  • 10
    • 0024942006 scopus 로고
    • The probability of causation under a stochastic model for individual risk
    • Robins J, Greenland S. The probability of causation under a stochastic model for individual risk. Biometrics. 1989;45:1125-1138
    • (1989) Biometrics , vol.45 , pp. 1125-1138
    • Robins, J.1    Greenland, S.2
  • 11
    • 0024322853 scopus 로고
    • Estimability and estimation of excess and etiologic fractions
    • Robins JM, Greenland S. Estimability and estimation of excess and etiologic fractions. Stat Med. 1989;8:845-859
    • (1989) Stat Med , vol.8 , pp. 845-859
    • Robins, J.M.1    Greenland, S.2
  • 12
    • 49549116657 scopus 로고    scopus 로고
    • Does obesity shorten life? the importance of well-Defined interventions to answer causal questions
    • Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-Defined interventions to answer causal questions. Int J Obes (Lond ;32(suppl 3):S8-S14
    • Int J Obes (Lond , vol.32 , Issue.SUPPL.3
    • Hernán, M.A.1    Taubman, S.L.2
  • 13
    • 79955059963 scopus 로고    scopus 로고
    • Compound treatments and transportability of causal inference
    • Hernán MA, VanderWeele TJ. Compound treatments and transportability of causal inference. Epidemiology. 2011;22:368-377
    • (2011) Epidemiology , vol.22 , pp. 368-377
    • Hernán, M.A.1    Vanderweele, T.J.2
  • 14
    • 84920420698 scopus 로고
    • Statistics causal inference
    • Holland PW. Statistics and Causal Inference. J Amer Statistical Assoc. 1986;81:845-847
    • (1986) J Amer Statistical Assoc , vol.81 , pp. 845-847
    • Holland, P.W.1
  • 15
    • 23044481094 scopus 로고    scopus 로고
    • Epidemiologic measures and policy formulation: Lessons from potential outcomes
    • Greenland S. Epidemiologic measures and policy formulation: Lessons from potential outcomes. Emerg Themes Epidemiol. 2005;2:5
    • (2005) Emerg Themes Epidemiol , vol.2 , pp. 5
    • Greenland, S.1
  • 16
    • 70349130001 scopus 로고    scopus 로고
    • Identifiability, exchangeability and confounding revisited
    • Greenland, S, Robins J. Identifiability, exchangeability and confounding revisited. Epidemiol Perspect Innov. 2009;6:4
    • (2009) Epidemiol Perspect Innov , vol.6 , pp. 4
    • Greenland, S.1    Robins, J.2
  • 17
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550-560
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 18
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413-419
    • (1986) Int J Epidemiol , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 19
    • 38249019870 scopus 로고
    • Formal modes of statistical inference for causal effects
    • Rubin, DB. Formal modes of statistical inference for causal effects. J Stat Plan Inference. 1990;25:279-292
    • (1990) J Stat Plan Inference , vol.25 , pp. 279-292
    • Rubin, D.B.1
  • 21
    • 66749163597 scopus 로고    scopus 로고
    • Commentary: Gilding the black box
    • Kaufman JS. Commentary: Gilding the black box. Int J Epidemiol. 2009;38:845-847
    • (2009) Int J Epidemiol , vol.38 , pp. 845-847
    • Kaufman, J.S.1
  • 22
    • 0032805064 scopus 로고    scopus 로고
    • Relation of probability of causation to relative risk and doubling dose: A methodologic error that has become a social problem
    • Greenland S. Relation of probability of causation to relative risk and doubling dose: A methodologic error that has become a social problem. Am J Public Health. 1999;89:1166-1169
    • (1999) Am J Public Health , vol.89 , pp. 1166-1169
    • Greenland, S.1
  • 23
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • Rubin DB. Causal inference using potential outcomes: Design, modeling, decisions. J Amer Statistical Assoc. 2005;100:322-331
    • (2005) J Amer Statistical Assoc , vol.100 , pp. 322-331
    • Rubin, D.B.1
  • 24
    • 84861837320 scopus 로고    scopus 로고
    • Propensity scores: From naive enthusiasm to intuitive understanding
    • W illiamson E, Morley R, Lucas A, Carpenter J. Propensity scores: From naive enthusiasm to intuitive understanding. Stat Methods Med Res. 2012;21:273-293
    • (2012) Stat Methods Med Res , vol.21 , pp. 273-293
    • Williamson, E.1    Morley, R.2    Lucas, A.3    Carpenter, J.4
  • 26
    • 73049107154 scopus 로고    scopus 로고
    • Bias analysis of the instrumental variable estimator as an estimator of the average causal effect
    • C hiba Y. Bias analysis of the instrumental variable estimator as an estimator of the average causal effect. Contemp Clin Trials. 2010;31:12-17
    • (2010) Contemp Clin Trials , vol.31 , pp. 12-17
    • Chiba, Y.1
  • 27
    • 36349016111 scopus 로고    scopus 로고
    • Bounds on potential risks and causal risk differences under assumptions about confounding parameters
    • C hiba Y, Sato T, Greenland S. Bounds on potential risks and causal risk differences under assumptions about confounding parameters. Stat Med. 2007;26:5125-5135
    • (2007) Stat Med , vol.26 , pp. 5125-5135
    • Chiba, Y.1    Sato, T.2    Greenland, S.3
  • 28
    • 26244455526 scopus 로고    scopus 로고
    • Causal inference based on counterfactuals
    • Höfler M. Causal inference based on counterfactuals. BMC Med Res Methodol. 2005;5:28
    • (2005) BMC Med Res Methodol , vol.5 , pp. 28
    • Höfler, M.1
  • 29
    • 0345827892 scopus 로고    scopus 로고
    • Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies
    • Hogan JW, Lancaster T. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. Stat Methods Med Res. 2004;13:17-48
    • (2004) Stat Methods Med Res , vol.13 , pp. 17-48
    • Hogan, J.W.1    Lancaster, T.2
  • 30
    • 0142155652 scopus 로고    scopus 로고
    • Causal inference from randomized trials in social epidemiology
    • Kaufman JS, Kaufman S, Poole C. Causal inference from randomized trials in social epidemiology. Soc Sci Med. 2003;57:2397-2409
    • (2003) Soc Sci Med , vol.57 , pp. 2397-2409
    • Kaufman, J.S.1    Kaufman, S.2    Poole, C.3
  • 31
    • 0033942150 scopus 로고    scopus 로고
    • Causal effects in clinical and epidemiological studies via potential outcomes: Concepts and analytical approaches
    • L ittle RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: Concepts and analytical approaches. Annu Rev Public Health. 2000;21:121-145
    • (2000) Annu Rev Public Health , vol.21 , pp. 121-145
    • Little, R.J.1    Rubin, D.B.2
  • 32
    • 58149417330 scopus 로고
    • Estimating casual effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating casual effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688-701
    • (1974) J Educ Psychol , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 33
    • 0026354283 scopus 로고
    • Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism
    • Rubin DB. Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics. 1991;47:1213-1234
    • (1991) Biometrics , vol.47 , pp. 1213-1234
    • Rubin, D.B.1
  • 34
    • 55549113585 scopus 로고    scopus 로고
    • Causal inference from longitudinal studies with baseline randomization
    • Article 22
    • T oh S, Hernán MA. Causal inference from longitudinal studies with baseline randomization. Int J Biostat. 2008;4:Article 22
    • (2008) Int J Biostat , vol.4
    • Toh, S.1    Hernán, M.A.2
  • 35
    • 77949620091 scopus 로고    scopus 로고
    • Campbell's and Rubin's perspectives on causal inference
    • W est SG, Thoemmes F. Campbell's and Rubin's perspectives on causal inference. Psychol Methods. 2010;15:18-37
    • (2010) Psychol Methods , vol.15 , pp. 18-37
    • West, S.G.1    Thoemmes, F.2
  • 36
    • 84880898821 scopus 로고    scopus 로고
    • A counterfactual approach to bias and effect modification in terms of response types
    • Suzuki E, Mitsuhashi T, Tsuda T, Yamamoto E. A counterfactual approach to bias and effect modification in terms of response types. BMC Med Res Methodol. 2013;13:101
    • (2013) BMC Med Res Methodol , vol.13 , pp. 101
    • Suzuki, E.1    Mitsuhashi, T.2    Tsuda, T.3    Yamamoto, E.4
  • 39
    • 64049098402 scopus 로고    scopus 로고
    • 5th ed. Sudbury, Mass: Jones and Bartlett Publishers
    • Merrill RM. Introduction to Epidemiology. 5th ed. Sudbury, Mass: Jones and Bartlett Publishers; 2010
    • (2010) Introduction to Epidemiology
    • Merrill, R.M.1
  • 41
    • 70349337908 scopus 로고    scopus 로고
    • Confounding
    • Boslaugh S, ed. Los Angeles, Calif Sage Publications
    • Greenland S. Confounding. In: Boslaugh S, ed. Encyclopedia of Epidemiology. Los Angeles, Calif: Sage Publications; 2008
    • (2008) Encyclopedia of Epidemiology
    • Greenland, S.1
  • 42
    • 0033825852 scopus 로고    scopus 로고
    • Choice of effect measure for epidemiological data
    • W alter SD. Choice of effect measure for epidemiological data. J Clin Epidemiol. 2000;53:931-939
    • (2000) J Clin Epidemiol , vol.53 , pp. 931-939
    • Walter, S.D.1
  • 46
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29-46
    • (1999) Stat Sci , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 47
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • Schafer JL, Kang J. Average causal effects from nonrandomized studies: A practical guide and simulated example. Psychol Methods. 2008;13:279-313
    • (2008) Psychol Methods , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 48
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiological data
    • Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006;60:578-586
    • (2006) J Epidemiol Community Health , vol.60 , pp. 578-586
    • Hernán, M.A.1    Robins, J.M.2
  • 49
    • 31344433620 scopus 로고    scopus 로고
    • Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensitybased weighting under conditions of nonuniform effect
    • Kurth T, Walker AM, Glynn RJ, et al. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensitybased weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262-270
    • (2006) Am J Epidemiol , vol.163 , pp. 262-270
    • Kurth, T.1    Walker, A.M.2    Glynn, R.J.3
  • 50
    • 63149083464 scopus 로고    scopus 로고
    • British society for rheumatology biologics register; British society for rheumatology biologics register control centre consortium different methods of balancing covariates leading to different effect estimates in the presence of effect modification
    • L unt M, Solomon D, Rothman K, et al; British Society for Rheumatology Biologics Register; British Society for Rheumatology Biologics Register Control Centre Consortium. Different methods of balancing covariates leading to different effect estimates in the presence of effect modification. Am J Epidemiol. 2009;169:909-917
    • (2009) Am J Epidemiol , vol.169 , pp. 909-917
    • Lunt, M.1    Solomon, D.2    Rothman, K.3
  • 51
    • 1542472967 scopus 로고    scopus 로고
    • Marginal structural models as a tool for standardization
    • Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology. 2003;14:680-686
    • (2003) Epidemiology , vol.14 , pp. 680-686
    • Sato, T.1    Matsuyama, Y.2
  • 52
    • 33750470800 scopus 로고    scopus 로고
    • Insights into different results from different causal contrasts in the presence of effect-measure modification
    • Stürmer T, Rothman KJ, Glynn RJ. Insights into different results from different causal contrasts in the presence of effect-measure modification. Pharmacoepidemiol Drug Saf. 2006;15:698-709
    • (2006) Pharmacoepidemiol Drug Saf , vol.15 , pp. 698-709
    • Stürmer, T.1    Rothman, K.J.2    Glynn, R.J.3
  • 53
    • 80051491646 scopus 로고    scopus 로고
    • What would have been is not what would be: Counterfactuals of the past and potential outcomes of the future
    • Shrout PE, Keyes KM, Ornstein K, eds. New York, NY: Oxford University Press
    • Schwartz S, Gatto NM, Campbell UB. What would have been is not what would be: Counterfactuals of the past and potential outcomes of the future. In: Shrout PE, Keyes KM, Ornstein K, eds. Causality and Psychopathology. New York, NY: Oxford University Press; 2011
    • (2011) Causality and Psychopathology
    • Schwartz, S.1    Gatto, N.M.2    Campbell, U.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.