메뉴 건너뛰기




Volumn , Issue , 2010, Pages 241-249

Determining the number of components in mixture models for hierarchical data

Author keywords

AIC; BIC; ICOMP; Mixture components; Multilevel latent class analysis; Multilevel mixture model; Validation log likelihood

Indexed keywords

AIC; BIC; ICOMP; LATENT CLASS ANALYSIS; LOG LIKELIHOOD; MIXTURE COMPONENTS; MIXTURE MODEL;

EID: 84879593343     PISSN: 14318814     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-642-01044-6-22     Document Type: Conference Paper
Times cited : (57)

References (14)
  • 1
    • 0032958330 scopus 로고    scopus 로고
    • A general maximum likelihood analysis of variance components in generalized linear models
    • Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 218-234.
    • (1999) Biometrics , vol.55 , pp. 218-234
    • Aitkin, M.1
  • 2
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-fisher information matrix
    • Opitz, O., Lausen, B., & Klar, R. (Eds.), Heidelberg: Springer
    • Bozdogan, H. (1993). Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-fisher information matrix. In Opitz, O., Lausen, B., & Klar, R. (Eds.), Information and classification (pp. 218-234). Heidelberg: Springer.
    • (1993) Information and Classification , pp. 218-234
    • Bozdogan, H.1
  • 4
    • 79959865799 scopus 로고    scopus 로고
    • Model selection for the binary latent class model: A Monte Carlo simulation
    • V. Batagelj, H.-H. Bock, A. Ferligoj, & A. Žiberna (Eds.), Berlin: Springer
    • Dias, J. G. (2006). Model selection for the binary latent class model: A Monte Carlo simulation. In: V. Batagelj, H.-H. Bock, A. Ferligoj, & A. Žiberna (Eds.), Data science and classification (pp. 91-99). Berlin: Springer.
    • (2006) Data Science and Classification , pp. 91-99
    • Dias, J.G.1
  • 6
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux, B. G. (1992). Consistent estimation of a mixing distribution. Annals of Statistics, 20, 1350-1360.
    • (1992) Annals of Statistics , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 7
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K. L., Muthen, B. O., & Asparouhov, T. (2003). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14, 535-569.
    • (2003) Structural Equation Modeling: A Multidisciplinary Journal , vol.14 , pp. 535-569
    • Nylund, K.L.1    Muthen, B.O.2    Asparouhov, T.3
  • 8
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth, D. (2000). Model selection for probabilistic clustering using cross-validated likelihood. Statistics and Computing, 9, 63-72.
    • (2000) Statistics and Computing , vol.9 , pp. 63-72
    • Smyth, D.1
  • 9
    • 9144238101 scopus 로고    scopus 로고
    • Multilevel latent class models
    • Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213-239.
    • (2003) Sociological Methodology , vol.33 , pp. 213-239
    • Vermunt, J.K.1
  • 10
    • 1842683176 scopus 로고    scopus 로고
    • An em algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models
    • Vermunt, J. K. (2004). An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistical Neerlandica, 58, 220-233.
    • (2004) Statistical Neerlandica , vol.58 , pp. 220-233
    • Vermunt, J.K.1
  • 11
    • 33645008004 scopus 로고    scopus 로고
    • Mixed-effects logistic regression models for indirectly observed outcome variables
    • Vermunt, J. K. (2005). Mixed-effects logistic regression models for indirectly observed outcome variables. Multilevel Behavioral Research, 40, 281-301.
    • (2005) Multilevel Behavioral Research , vol.40 , pp. 281-301
    • Vermunt, J.K.1
  • 12
    • 34247860763 scopus 로고    scopus 로고
    • A hierarchical mixture model for clustering three-way data sets
    • Vermunt, J. K. (2007). A hierarchical mixture model for clustering three-way data sets. Computational Statistics and Data Analysis, 51, 5368-5376.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5368-5376
    • Vermunt, J.K.1
  • 13
    • 36749017004 scopus 로고    scopus 로고
    • Latent class and finite mixture models for multilevel data sets
    • Vermunt, J. K. (2008). Latent class and finite mixture models for multilevel data sets. Statistical Methods in Medical Research, 17, 33-51.
    • (2008) Statistical Methods in Medical Research , vol.17 , pp. 33-51
    • Vermunt, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.