메뉴 건너뛰기




Volumn , Issue , 2011, Pages 189-212

Mixtures of factor analysers for the analysis of high-dimensional data

Author keywords

Choice of number of factors q; Fitting of factor analytic models as with MFA approach; Low dimensional plots via MCFA approach results of a clustering in low dimensional space; MFA and MCFA approaches for implied clustering versus true membership of Vietnam data; Mixture of factor analysers model sensitive to outliers, multivariate normal family for distributions of errors and latent factors; Mixtures of factor analysers for analysis of high dimensional data; Mixtures of factor analysers mixtures of common factor analysers (MCFA); Restriction of sphericity of errors of diagonal covariance matrices, distributions of factors; Single factor analysis model factor analysis, used for explaining data; Use of mixtures of factor analysers reducing parameters, specification of component covariance matrices

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COVARIANCE MATRIX; MIXTURES; MULTIVARIANT ANALYSIS;

EID: 84955365480     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119995678.ch9     Document Type: Chapter
Times cited : (12)

References (38)
  • 1
    • 84955385503 scopus 로고    scopus 로고
    • Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    • (Submitted for publication)
    • Baek, J. and McLachlan, G. J. (2010) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data (Submitted for publication).
    • (2010)
    • Baek, J.1    McLachlan, G.J.2
  • 2
    • 77949516728 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings for the clustering and visualisation of high-dimensional data
    • Technical Report NI08018-SCH, Preprint Series of the Isaac Newton Institute for Mathematical Sciences, Cambridge
    • Baek, J. and McLachlan, G. J. (2008) Mixtures of factor analyzers with common factor loadings for the clustering and visualisation of high-dimensional data, Technical Report NI08018-SCH, Preprint Series of the Isaac Newton Institute for Mathematical Sciences, Cambridge.
    • (2008)
    • Baek, J.1    McLachlan, G.J.2
  • 3
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
    • Baek, J. McLachlan, G. J. and Flack L. K. (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1298-1309.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 1298-1309
    • McLachlan, B.J.1    Flack, L.K.2
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery,A. E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • Chang, W. C. (1983) On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267-275.
    • (1983) Applied Statistics , vol.32 , pp. 267-275
    • Chang, W.C.1
  • 8
    • 84904005970 scopus 로고    scopus 로고
    • Latent classes of objects and variable selection
    • (ed. P. Brito). Springer-Verlag
    • Galimberti, G., Montanari, A. and Viroli, C. (2008) Latent classes of objects and variable selection. In Proceedings of COMPSTAT 2008 (ed. P. Brito), pp. 373-383. Springer-Verlag.
    • (2008) Proceedings of COMPSTAT 2008 , pp. 373-383
    • Galimberti, G.1    Montanari, A.2    Viroli, C.3
  • 9
    • 0003057177 scopus 로고
    • Interpreting the likelihood ratio statistic in factor models when sample size is small
    • Geweke, J. F. and Singleton, K. J. (1980) Interpreting the likelihood ratio statistic in factor models when sample size is small. Journal of the American Statistical Association, 75, 133-137.
    • (1980) Journal of the American Statistical Association , vol.75 , pp. 133-137
    • Geweke, J.F.1    Singleton, K.J.2
  • 10
    • 0003744821 scopus 로고    scopus 로고
    • The EM algorithm for factor analyzers
    • Technical Report CRG-TR-96-196-91, The University of Toronto, Toronto
    • Ghahramani, Z. and Hinton, G. E. (1997) The EM algorithm for factor analyzers. Technical Report CRG-TR-96-1, The University of Toronto, Toronto.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 12
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood-estimators of location-scale mixtures
    • Hennig, C. (2004) Breakdown points for maximum likelihood-estimators of location-scale mixtures. Annals of Statistics, 32, 1313-1340.
    • (2004) Annals of Statistics , vol.32 , pp. 1313-1340
    • Hennig, C.1
  • 15
    • 0001368374 scopus 로고
    • Distribution de la florine alpine dans la Bassin de Dranses et dans quelques regions voisines
    • Jaccard, P. (1901) Distribution de la florine alpine dans la Bassin de Dranses et dans quelques regions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37, 241-272.
    • (1901) Bulletin de la Societe Vaudoise des Sciences Naturelles , vol.37 , pp. 241-272
    • Jaccard, P.1
  • 17
    • 84955340386 scopus 로고    scopus 로고
    • Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition. PhD Thesis, Johns Hopkins University, Maryland
    • Kumar, N. (1997) Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition. PhD Thesis, Johns Hopkins University, Maryland.
    • (1997)
    • Kumar, N.1
  • 22
    • 0036203115 scopus 로고    scopus 로고
    • Mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G. J., Bean, R. W. and Peel, D. (2002) Mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 24
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution
    • McLachlan, G. J., Bean, R. W. and Ben-Tovim Jones, L. (2007) Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution. Computational Statistics and Data Analysis, 51, 5327-5338.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 26
    • 78751536244 scopus 로고    scopus 로고
    • Heteroscedastic factor mixture analysis
    • (in press)
    • Montanari, A. and Viroli, C. (2010) Heteroscedastic factor mixture analysis. Statistical Modelling (in press).
    • (2010) Statistical Modelling
    • Montanari, A.1    Viroli, C.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 29144480705 scopus 로고    scopus 로고
    • Clustering noisy data in a reduced dimension space via multivariate regression trees
    • Smyth, C., Coomans, C. and Everingham, Y. (2006) Clustering noisy data in a reduced dimension space via multivariate regression trees. Pattern Recognition, 39, 424-431.
    • (2006) Pattern Recognition , vol.39 , pp. 424-431
    • Smyth, C.1    Coomans, C.2    Everingham, Y.3
  • 31
    • 0004191977 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Technical Report NCRG/97/003, Neural Computing Research Group, Aston University, Birmingham
    • Tipping, M. E. and Bishop, C. M. (1997) Mixtures of probabilistic principal component analysers. Technical Report NCRG/97/003, Neural Computing Research Group, Aston University, Birmingham.
    • (1997)
    • Tipping, M.E.1    Bishop, C.M.2
  • 32
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping, M. E. and Bishop, C. M. (1999) Mixtures of probabilistic principal component analysers. Neural Computation, 11, 443-482.
    • (1999) Neural Computation , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 33
    • 0004121180 scopus 로고    scopus 로고
    • Generalised linear Gaussian models
    • Technical Report CUED/F-INFENG/TR.420, Cambridge University Engineering Department
    • Rosti, A.-V. I. and Gales, M. J. F. (2001) Generalised linear Gaussian models. Technical Report CUED/F-INFENG/TR.420, Cambridge University Engineering Department.
    • (2001)
    • Rosti, A.-V.I.1    Gales, M.J.F.2
  • 34
    • 1642377925 scopus 로고    scopus 로고
    • Factor analysis hidden Markov models for speech recognition
    • Rosti, A.-V. I. and Gales, M. J. F. (2004) Factor analysis hidden Markov models for speech recognition. Computer Speech and Language, 18, 181-200.
    • (2004) Computer Speech and Language , vol.18 , pp. 181-200
    • Rosti, A.-V.I.1    Gales, M.J.F.2
  • 35
    • 84895907429 scopus 로고    scopus 로고
    • Dimensionally reduced model-based clustering through mixtures of factor mixture analyzers
    • (in press)
    • Viroli, C. (2010) Dimensionally reduced model-based clustering through mixtures of factor mixture analyzers Journal of Classification (in press).
    • (2010) Journal of Classification
    • Viroli, C.1
  • 36
    • 77949520571 scopus 로고    scopus 로고
    • Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data
    • Xie, B., Pan,W. and Shen, X. (2010) Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data. Bioinformatics, 26, 501-508.
    • (2010) Bioinformatics , vol.26 , pp. 501-508
    • Xie, B.1    Pan, W.2    Shen, X.3
  • 38
    • 33745590867 scopus 로고    scopus 로고
    • ArrayCluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles
    • Yoshida, R., Higuchi, T. Imoto, S. and Miyano, S. (2006) ArrayCluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles. Bioinformatics, 22, 1538-1539.
    • (2006) Bioinformatics , vol.22 , pp. 1538-1539
    • Yoshida, R.1    Imoto, H.T.2    Miyano, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.