메뉴 건너뛰기




Volumn 14, Issue 4, 2013, Pages 402-410

On the classification of microarray gene-expression data

Author keywords

Factor models; Mixture models; Selection bias; Supervised classification; Time course data; Unsupervised classification

Indexed keywords

TRANSCRIPTOME;

EID: 84889059224     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbs056     Document Type: Article
Times cited : (18)

References (32)
  • 1
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863-8.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503-11.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1    Eisen, M.B.2    Davis, R.E.3
  • 3
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 5
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad SciUSA 2002;99:6562-6.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 6
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002;18:39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 7
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani RJ, Hastie T, Narasimhan B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002;99:6567-72.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6567-6572
    • Tibshirani, R.J.1    Hastie, T.2    Narasimhan, B.3
  • 9
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P, Marron JS, Neeman A. Geometric representation of high dimension, low sample size data. JRStatist Soc B 2005;67:427-44.
    • (2005) JRStatist Soc B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learn 2002;46:389-422.
    • (2002) Machine Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 12
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh E, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133-43.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.1    Ross, M.E.2    Shurtleff, S.A.3
  • 14
    • 33644765068 scopus 로고    scopus 로고
    • Selection bias in working with the top genes in supervised classification of tissue samples
    • Zhu X, Ambroise C, McLachlan GJ. Selection bias in working with the top genes in supervised classification of tissue samples. StatMethodol 2006;3:29-41.
    • (2006) StatMethodol , vol.3 , pp. 29-41
    • Zhu, X.1    Ambroise, C.2    McLachlan, G.J.3
  • 15
    • 35348875350 scopus 로고    scopus 로고
    • On selection biases with prediction rules formed from gene expression data
    • Zhu JX, McLachlan GJ, Ben-Tovim Jones L, et al. On selection biases with prediction rules formed from gene expression data. J Statist Plann Inference 2008;38:374-86.
    • (2008) J Statist Plann Inference , vol.38 , pp. 374-386
    • Zhu, J.X.1    McLachlan, G.J.2    Ben-Tovim Jones, L.3
  • 16
    • 84865311898 scopus 로고    scopus 로고
    • Correcting for selection bias via cross-validation in the classification of microarray data
    • Balakrishnan N, Pena E, Silvapulle MJ, (eds). Hayward, CA: IMS Lecture Notes-Monograph Series.
    • McLachlan GJ, Chevelu J, Zhu J. Correcting for selection bias via cross-validation in the classification of microarray data. In: Balakrishnan N, Pena E, Silvapulle MJ, (eds). Beyond Parametrics in Interdisciplinary Research: A Festschrift to PK Sen. Hayward, CA: IMS Lecture Notes-Monograph Series, 2008;383-95.
    • (2008) Beyond Parametrics in Interdisciplinary Research: A Festschrift to PK Sen , pp. 383-395
    • McLachlan, G.J.1    Chevelu, J.2    Zhu, J.3
  • 17
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski RB, Harabasz J. A dendrite method for cluster analysis. Commun Stat 1974;3:1-27.
    • (1974) Commun Stat , vol.3 , pp. 1-27
    • Calinski, R.B.1    Harabasz, J.2
  • 19
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani R., Walther G., Hastie T. Estimating the number of clusters in a data set via the gap statistic. J RStatist Soc B 2001;63:411-23.
    • (2001) J R Statist Soc B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978;6:461-4.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0001665174 scopus 로고
    • Statistical modelling of data on teaching styles (with discussion)
    • Aitkin M, Anderson D, Francis BJ, et al. Statistical modelling of data on teaching styles (with discussion). JRStatist Soc B 1981;144:419-61.
    • (1981) JRStatist Soc B , vol.144 , pp. 419-461
    • Aitkin, M.1    Anderson, D.2    Francis, B.J.3
  • 25
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan GJ. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. J Appl Stat 1987;36:318-24.
    • (1987) J Appl Stat , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 26
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993;49:803-21.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 27
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
    • Baek J, McLachlan GJ, Flack L. Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data. IEEETransPattern AnalMach Intell 2010;32:1298-309.
    • (2010) IEEETransPattern AnalMach Intell , vol.32 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.J.2    Flack, L.3
  • 28
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 2002;18:413-22.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 29
    • 79954535330 scopus 로고    scopus 로고
    • Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    • Baek J, McLachlan GJ. Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics 2011;27:1269-76.
    • (2011) Bioinformatics , vol.27 , pp. 1269-1276
    • Baek, J.1    McLachlan, G.J.2
  • 30
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L, Arabie P. Comparing partitions. J Class 1985;2:193-218.
    • (1985) J Class , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 31
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward JH, Jr. Hierarchical grouping to optimize an objective function. JAmStatAssoc 1963;48:236-44.
    • (1963) J Am Stat Assoc , vol.48 , pp. 236-244
    • Ward Jr., J.H.1
  • 32
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng SK, McLachlan GJ, Wang K, et al. A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 2006;22:1745-52.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.