메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Exact solutions for fractional partial differential equations by a new fractional sub-equation method

Author keywords

Exact solutions; Fractional complex transformation; Fractional partial differential equations; Fractional sub equation method

Indexed keywords


EID: 84889055780     PISSN: 16871839     EISSN: 16871847     Source Type: Journal    
DOI: 10.1186/1687-1847-2013-199     Document Type: Article
Times cited : (87)

References (54)
  • 1
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandi, A, Dehghan, AM: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326-1336 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, A.M.2
  • 2
    • 67349086967 scopus 로고    scopus 로고
    • Existence and uniqueness for p-type fractional neutral differential equations
    • Zhou, Y, Jiao, F, Li, J: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724-2733 (2009)
    • (2009) Nonlinear Anal. , vol.71 , pp. 2724-2733
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 3
    • 64549112216 scopus 로고    scopus 로고
    • Explicit methods for fractional differential equations and their stability properties
    • Galeone, L, Garrappa, R: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548-560 (2009)
    • (2009) J. Comput. Appl. Math. , vol.228 , pp. 548-560
    • Galeone, L.1    Garrappa, R.2
  • 4
    • 78049350845 scopus 로고    scopus 로고
    • A Lyapunov approach to the stability of fractional differential equations
    • Trigeassou, JC, Maamri, N, Sabatier, J, Oustaloup, A: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437-445 (2011)
    • (2011) Signal Process. , vol.91 , pp. 437-445
    • Trigeassou, J.C.1    Maamri, N.2    Sabatier, J.3    Oustaloup, A.4
  • 5
    • 71549156256 scopus 로고    scopus 로고
    • Smoothness and stability of the solutions for nonlinear fractional differential equations
    • Deng, W: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768-1777 (2010)
    • (2010) Nonlinear Anal. , vol.72 , pp. 1768-1777
    • Deng, W.1
  • 6
    • 78649445937 scopus 로고    scopus 로고
    • An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
    • Ghoreishi, F, Yazdani, S: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30-43 (2011)
    • (2011) Comput. Math. Appl. , vol.61 , pp. 30-43
    • Ghoreishi, F.1    Yazdani, S.2
  • 7
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-term fractional differential equations: Systems of equations
    • Edwards, JT, Ford, NJ, Simpson, AC: The numerical solution of linear multi-term fractional differential equations: systems of equations. J. Comput. Appl. Math. 148, 401-418 (2002)
    • (2002) J. Comput. Appl. Math. , vol.148 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, A.C.3
  • 8
    • 59149098037 scopus 로고    scopus 로고
    • Existence and approximation of solutions to fractional differential equations
    • Muslim, M: Existence and approximation of solutions to fractional differential equations. Math. Comput. Model. 49, 1164-1172 (2009)
    • (2009) Math. Comput. Model. , vol.49 , pp. 1164-1172
    • Muslim, M.1
  • 9
    • 84890871890 scopus 로고    scopus 로고
    • Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation
    • doi:10.2478/s11534-013-0203-7
    • Jafari, H, Tajadodi, H, Baleanu, D, Al-Zahrani, AA, Alhamed, YA, Zahid, AH: Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation. Cent. Eur. J. Phys. (2013). doi:10.2478/s11534-013-0203-7
    • (2013) Cent. Eur. J. Phys.
    • Jafari, H.1    Tajadodi, H.2    Baleanu, D.3    Al-Zahrani, A.A.4    Alhamed, Y.A.5    Zahid, A.H.6
  • 11
    • 84876532562 scopus 로고    scopus 로고
    • On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval
    • Nyamoradi, N, Baleanu, D, Agarwal, RP: On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval. Adv. Math. Phys. 2013, Article ID 823961 (2013)
    • (2013) Adv. Math. Phys. , vol.2013 , pp. 823961
    • Nyamoradi, N.1    Baleanu, D.2    Agarwal, R.P.3
  • 12
    • 33748901201 scopus 로고    scopus 로고
    • The Adomian decomposition method for solving partial differential equations of fractal order in finite domains
    • El-Sayed, AMA, Gaber, M: The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A 359, 175-182 (2006)
    • (2006) Phys. Lett. A , vol.359 , pp. 175-182
    • El-Sayed, A.M.A.1    Gaber, M.2
  • 13
    • 76449102580 scopus 로고    scopus 로고
    • Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
    • El-Sayed, AMA, Behiry, SH, Raslan, WE: Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation. Comput. Math. Appl. 59, 1759-1765 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1759-1765
    • El-Sayed, A.M.A.1    Behiry, S.H.2    Raslan, W.E.3
  • 14
    • 10344238128 scopus 로고    scopus 로고
    • Adomian decomposition: A tool for solving a system of fractional differential equations
    • Daftardar-Gejji, V, Jafari, H: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508-518 (2005)
    • (2005) J. Math. Anal. Appl. , vol.301 , Issue.2 , pp. 508-518
    • Daftardar-Gejji, V.1    Jafari, H.2
  • 15
    • 0007140364 scopus 로고    scopus 로고
    • A new approach to nonlinear partial differential equations
    • He, JH: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 230-235 (1997)
    • (1997) Commun. Nonlinear Sci. Numer. Simul. , vol.2 , pp. 230-235
    • He, J.H.1
  • 16
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • Wu, G, Lee, EWM: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506-2509 (2010)
    • (2010) Phys. Lett. A , vol.374 , pp. 2506-2509
    • Wu, G.1    Lee, E.W.M.2
  • 17
    • 78650881841 scopus 로고    scopus 로고
    • The fractional variational iteration method using He's polynomials
    • Guo, S, Mei, L: The fractional variational iteration method using He's polynomials. Phys. Lett. A 375, 309-313 (2011)
    • (2011) Phys. Lett. A , vol.375 , pp. 309-313
    • Guo, S.1    Mei, L.2
  • 18
    • 84875378030 scopus 로고    scopus 로고
    • Variational iteration method for the Burgers' flow with fractional derivatives - new Lagrange multipliers
    • Wu, GC, Baleanu, D: Variational iteration method for the Burgers' flow with fractional derivatives - new Lagrange multipliers. Appl. Math. Model. 37, 6183-6190 (2013)
    • (2013) Appl. Math. Model. , vol.37 , pp. 6183-6190
    • Wu, G.C.1    Baleanu, D.2
  • 19
    • 84871756844 scopus 로고    scopus 로고
    • A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials
    • Jafari, H, Tajadodi, H, Baleanu, D: A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fract. Calc. Appl. Anal. 16(1), 109-122 (2013)
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.1 , pp. 109-122
    • Jafari, H.1    Tajadodi, H.2    Baleanu, D.3
  • 20
    • 84861715300 scopus 로고    scopus 로고
    • Solutions of the fractional Davey-Stewartson equations with variational iteration method
    • Jafari, H, Kadem, A, Baleanu, D, Yilmaz, T: Solutions of the fractional Davey-Stewartson equations with variational iteration method. Rom. Rep. Phys. 64(2), 337-346 (2012)
    • (2012) Rom. Rep. Phys. , vol.64 , Issue.2 , pp. 337-346
    • Jafari, H.1    Kadem, A.2    Baleanu, D.3    Yilmaz, T.4
  • 21
    • 84890924971 scopus 로고    scopus 로고
    • Analytical solutions of nonlinear fractional differential equations using variational iteration method
    • Jafari, H, Khalique, CM: Analytical solutions of nonlinear fractional differential equations using variational iteration method. J. Nonlinear Syst. Appl. 2(3-4), 148-151 (2011)
    • (2011) J. Nonlinear Syst. Appl. , vol.2 , Issue.3-4 , pp. 148-151
    • Jafari, H.1    Khalique, C.M.2
  • 22
    • 84871731748 scopus 로고    scopus 로고
    • He's variational iteration method for solving fractional Riccati differential equation
    • Jafari, H, Tajadodi, H: He's variational iteration method for solving fractional Riccati differential equation. Int. J. Differ. Equ. 2010, Article ID 764738 (2010)
    • (2010) Int. J. Differ. Equ. , vol.2010 , pp. 764738
    • Jafari, H.1    Tajadodi, H.2
  • 23
    • 0032672778 scopus 로고    scopus 로고
    • Homotopy perturbation technique
    • He, JH: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257-262 (1999)
    • (1999) Comput. Methods Appl. Mech. Eng. , vol.178 , pp. 257-262
    • He, J.H.1
  • 24
    • 0033702384 scopus 로고    scopus 로고
    • A coupling method of homotopy technique and a perturbation technique for non-linear problems
    • He, JH: A coupling method of homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35, 37-43 (2000)
    • (2000) Int. J. Non-Linear Mech. , vol.35 , pp. 37-43
    • He, J.H.1
  • 25
    • 61449220353 scopus 로고    scopus 로고
    • Application of the homotopy perturbation method for coupled system of partial differential equations with time fractional derivatives
    • Ganji, ZZ, Ganji, DD, Jafari, H, Rostamian, M: Application of the homotopy perturbation method for coupled system of partial differential equations with time fractional derivatives. Topol. Methods Nonlinear Anal. 31(2), 341-348 (2008)
    • (2008) Topol. Methods Nonlinear Anal. , vol.31 , Issue.2 , pp. 341-348
    • Ganji, Z.Z.1    Ganji, D.D.2    Jafari, H.3    Rostamian, M.4
  • 26
    • 35348938590 scopus 로고    scopus 로고
    • Solving fractional diffusion and wave equations by modified homotopy perturbation method
    • Jafari, H, Momani, Sh: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 370, 388-396 (2007)
    • (2007) Phys. Lett. A , vol.370 , pp. 388-396
    • Jafari, H.1    Momani, Sh.2
  • 27
    • 36549063424 scopus 로고    scopus 로고
    • Fractional Green function for linear time-fractional equations of fractional order
    • Odibat, Z, Momani, S: Fractional Green function for linear time-fractional equations of fractional order. Appl. Math. Lett. 21, 194-199 (2008)
    • (2008) Appl. Math. Lett. , vol.21 , pp. 194-199
    • Odibat, Z.1    Momani, S.2
  • 28
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui, M: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792-7804 (2009)
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 29
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • Huang, Q, Huang, G, Zhan, H: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578-1589 (2008)
    • (2008) Adv. Water Resour. , vol.31 , pp. 1578-1589
    • Huang, Q.1    Huang, G.2    Zhan, H.3
  • 30
    • 79251635229 scopus 로고    scopus 로고
    • Fractional sub-equation method and its applications to nonlinear fractional PDEs
    • Zhang, S, Zhang, HQ: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069-1073 (2011)
    • (2011) Phys. Lett. A , vol.375 , pp. 1069-1073
    • Zhang, S.1    Zhang, H.Q.2
  • 31
    • 84855193408 scopus 로고    scopus 로고
    • The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics
    • 2012
    • Guo, SM, Mei, LQ, Li, Y, Sun, YF: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376(2012), 407-411 (2012)
    • (2012) Phys. Lett. A , vol.376 , pp. 407-411
    • Guo, S.M.1    Mei, L.Q.2    Li, Y.3    Sun, Y.F.4
  • 32
    • 84861576550 scopus 로고    scopus 로고
    • Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations
    • Lu, B: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045-2048 (2012)
    • (2012) Phys. Lett. A , vol.376 , pp. 2045-2048
    • Lu, B.1
  • 33
    • 84864025292 scopus 로고    scopus 로고
    • The first integral method for some time fractional differential equations
    • Lu, B: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684-693 (2012)
    • (2012) J. Math. Anal. Appl. , vol.395 , pp. 684-693
    • Lu, B.1
  • 34
    • 84870265361 scopus 로고    scopus 로고
    • (G′/G)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics
    • Zheng, B: (G′/G)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623-630 (2012)
    • (2012) Commun. Theor. Phys. , vol.58 , pp. 623-630
    • Zheng, B.1
  • 35
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie, G: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367-1376 (2006)
    • (2006) Comput. Math. Appl. , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 36
    • 37549033511 scopus 로고    scopus 로고
    • The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
    • Wang, ML, Li, XZ, Zhang, JL: The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008)
    • (2008) Phys. Lett. A , vol.372 , pp. 417-423
    • Wang, M.L.1    Li, X.Z.2    Zhang, J.L.3
  • 37
    • 55949087342 scopus 로고    scopus 로고
    • Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations
    • Wang, ML, Zhang, JL, Li, XZ: Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations. Appl. Math. Comput. 206, 321-326 (2008)
    • (2008) Appl. Math. Comput. , vol.206 , pp. 321-326
    • Wang, M.L.1    Zhang, J.L.2    Li, X.Z.3
  • 38
    • 70449524234 scopus 로고    scopus 로고
    • Discrete exact solutions to some nonlinear differential-difference equations via the (G′/G)-expansion method
    • Aslan, I: Discrete exact solutions to some nonlinear differential- difference equations via the (G′/G)-expansion method. Appl. Math. Comput. 215, 3140-3147 (2009)
    • (2009) Appl. Math. Comput. , vol.215 , pp. 3140-3147
    • Aslan, I.1
  • 39
    • 84859155202 scopus 로고    scopus 로고
    • The (G′/G)-expansion method for the nonlinear lattice equations
    • Ayhan, B, Bekir, A: The (G′/G)-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3490-3498 (2012)
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 3490-3498
    • Ayhan, B.1    Bekir, A.2
  • 40
    • 62549122061 scopus 로고    scopus 로고
    • New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method
    • Kong, CC, Wang, D, Song, LN, Zhang, HQ: New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method. Chaos Solitons Fractals 39, 697-706 (2009)
    • (2009) Chaos Solitons Fractals , vol.39 , pp. 697-706
    • Kong, C.C.1    Wang, D.2    Song, L.N.3    Zhang, H.Q.4
  • 41
    • 0344465033 scopus 로고    scopus 로고
    • Generalized transformations and abundant new families of exact solutions for (2 + 1)-dimensional dispersive long wave equations
    • Yan, ZY: Generalized transformations and abundant new families of exact solutions for (2 + 1)-dimensional dispersive long wave equations. Comput. Math. Appl. 46, 1363-1372 (2003)
    • (2003) Comput. Math. Appl. , vol.46 , pp. 1363-1372
    • Yan, Z.Y.1
  • 42
    • 11144260805 scopus 로고    scopus 로고
    • New multisoliton solutions of the (2 + 1)-dimensional dispersive long wave equations
    • Zhang, JF, Han, P: New multisoliton solutions of the (2 + 1)-dimensional dispersive long wave equations. Commun. Nonlinear Sci. Numer. Simul. 6, 178-182 (2001)
    • (2001) Commun. Nonlinear Sci. Numer. Simul. , vol.6 , pp. 178-182
    • Zhang, J.F.1    Han, P.2
  • 43
    • 81555214719 scopus 로고    scopus 로고
    • Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation
    • Eslami, M, Neyrame, A, Ebrahimi, M: Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation. J. King Saud Univ, Comput. Inf. Sci. 24, 69-71 (2012)
    • (2012) J. King Saud Univ, Comput. Inf. Sci. , vol.24 , pp. 69-71
    • Eslami, M.1    Neyrame, A.2    Ebrahimi, M.3
  • 44
    • 25144481359 scopus 로고    scopus 로고
    • A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation
    • Chen, Y, Wang, Q: A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation. Appl. Math. Comput. 167, 919-929 (2005)
    • (2005) Appl. Math. Comput. , vol.167 , pp. 919-929
    • Chen, Y.1    Wang, Q.2
  • 45
    • 19444365777 scopus 로고    scopus 로고
    • An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation
    • Wang, Q, Chen, Y, Zhang, HQ: An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation. Phys. Lett. A 340, 411-426 (2005)
    • (2005) Phys. Lett. A , vol.340 , pp. 411-426
    • Wang, Q.1    Chen, Y.2    Zhang, H.Q.3
  • 46
    • 1242285571 scopus 로고    scopus 로고
    • Symbolic computation and construction of soliton-like solutions to the (2 + 1)-dimensional dispersive long-wave equations
    • Chen, Y, Li, B: Symbolic computation and construction of soliton-like solutions to the (2 + 1)-dimensional dispersive long-wave equations. Int. J. Eng. Sci. 42, 715-724 (2004)
    • (2004) Int. J. Eng. Sci. , vol.42 , pp. 715-724
    • Chen, Y.1    Li, B.2
  • 47
    • 57549089842 scopus 로고    scopus 로고
    • New exact solutions and conservation laws of the (2 + 1)-dimensional dispersive long wave equations
    • Liu, N, Liu, XQ, Lu, HL: New exact solutions and conservation laws of the (2 + 1)-dimensional dispersive long wave equations. Phys. Lett. A 373, 214-220 (2009)
    • (2009) Phys. Lett. A , vol.373 , pp. 214-220
    • Liu, N.1    Liu, X.Q.2    Lu, H.L.3
  • 48
    • 70350572849 scopus 로고    scopus 로고
    • Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations
    • Zhang, S, Tong, JL, Wang, W: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations. Comput. Math. Appl. 58, 2294-2299 (2009)
    • (2009) Comput. Math. Appl. , vol.58 , pp. 2294-2299
    • Zhang, S.1    Tong, J.L.2    Wang, W.3
  • 49
    • 33744998187 scopus 로고    scopus 로고
    • Exact solution for (2 + 1)-dimension nonlinear dispersive long wave equation
    • Zhou, YQ, Liu, Q, Zhang, J, Zhang, WN: Exact solution for (2 + 1)-dimension nonlinear dispersive long wave equation. Appl. Math. Comput. 177, 495-499 (2006)
    • (2006) Appl. Math. Comput. , vol.177 , pp. 495-499
    • Zhou, Y.Q.1    Liu, Q.2    Zhang, J.3    Zhang, W.N.4
  • 50
    • 18844387420 scopus 로고    scopus 로고
    • The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation
    • Yomba, E: The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 26, 785-794 (2005)
    • (2005) Chaos Solitons Fractals , vol.26 , pp. 785-794
    • Yomba, E.1
  • 51
    • 4644280569 scopus 로고    scopus 로고
    • A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation
    • Chen, Y, Wang, Q: A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 23, 801-807 (2005)
    • (2005) Chaos Solitons Fractals , vol.23 , pp. 801-807
    • Chen, Y.1    Wang, Q.2
  • 52
    • 33645846944 scopus 로고    scopus 로고
    • Symbolic computation and new families of exact solutions to the (2 + 1)-dimensional dispersive long-wave equations
    • Zeng, X, Zeng, J: Symbolic computation and new families of exact solutions to the (2 + 1)-dimensional dispersive long-wave equations. Chaos Solitons Fractals 29, 1115-1120 (2006)
    • (2006) Chaos Solitons Fractals , vol.29 , pp. 1115-1120
    • Zeng, X.1    Zeng, J.2
  • 53
    • 33749573230 scopus 로고    scopus 로고
    • The periodic wave solutions for the (2 + 1)-dimensional dispersive long water equations
    • Zhang, S: The periodic wave solutions for the (2 + 1)-dimensional dispersive long water equations. Chaos Solitons Fractals 32, 847-854 (2007)
    • (2007) Chaos Solitons Fractals , vol.32 , pp. 847-854
    • Zhang, S.1
  • 54
    • 55949098139 scopus 로고    scopus 로고
    • Exact soliton solutions for the fifth-order Sawada-Kotera equation
    • Liu, CF, Dai, ZD: Exact soliton solutions for the fifth-order Sawada-Kotera equation. Appl. Math. Comput. 206, 272-275 (2008)
    • (2008) Appl. Math. Comput. , vol.206 , pp. 272-275
    • Liu, C.F.1    Dai, Z.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.