-
1
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
Saadatmandi, A, Dehghan, AM: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326-1336 (2010)
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, A.M.2
-
2
-
-
67349086967
-
Existence and uniqueness for p-type fractional neutral differential equations
-
Zhou, Y, Jiao, F, Li, J: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724-2733 (2009)
-
(2009)
Nonlinear Anal.
, vol.71
, pp. 2724-2733
-
-
Zhou, Y.1
Jiao, F.2
Li, J.3
-
3
-
-
64549112216
-
Explicit methods for fractional differential equations and their stability properties
-
Galeone, L, Garrappa, R: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548-560 (2009)
-
(2009)
J. Comput. Appl. Math.
, vol.228
, pp. 548-560
-
-
Galeone, L.1
Garrappa, R.2
-
4
-
-
78049350845
-
A Lyapunov approach to the stability of fractional differential equations
-
Trigeassou, JC, Maamri, N, Sabatier, J, Oustaloup, A: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437-445 (2011)
-
(2011)
Signal Process.
, vol.91
, pp. 437-445
-
-
Trigeassou, J.C.1
Maamri, N.2
Sabatier, J.3
Oustaloup, A.4
-
5
-
-
71549156256
-
Smoothness and stability of the solutions for nonlinear fractional differential equations
-
Deng, W: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768-1777 (2010)
-
(2010)
Nonlinear Anal.
, vol.72
, pp. 1768-1777
-
-
Deng, W.1
-
6
-
-
78649445937
-
An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
-
Ghoreishi, F, Yazdani, S: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30-43 (2011)
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 30-43
-
-
Ghoreishi, F.1
Yazdani, S.2
-
7
-
-
0037113861
-
The numerical solution of linear multi-term fractional differential equations: Systems of equations
-
Edwards, JT, Ford, NJ, Simpson, AC: The numerical solution of linear multi-term fractional differential equations: systems of equations. J. Comput. Appl. Math. 148, 401-418 (2002)
-
(2002)
J. Comput. Appl. Math.
, vol.148
, pp. 401-418
-
-
Edwards, J.T.1
Ford, N.J.2
Simpson, A.C.3
-
8
-
-
59149098037
-
Existence and approximation of solutions to fractional differential equations
-
Muslim, M: Existence and approximation of solutions to fractional differential equations. Math. Comput. Model. 49, 1164-1172 (2009)
-
(2009)
Math. Comput. Model.
, vol.49
, pp. 1164-1172
-
-
Muslim, M.1
-
9
-
-
84890871890
-
Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation
-
doi:10.2478/s11534-013-0203-7
-
Jafari, H, Tajadodi, H, Baleanu, D, Al-Zahrani, AA, Alhamed, YA, Zahid, AH: Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation. Cent. Eur. J. Phys. (2013). doi:10.2478/s11534-013-0203-7
-
(2013)
Cent. Eur. J. Phys.
-
-
Jafari, H.1
Tajadodi, H.2
Baleanu, D.3
Al-Zahrani, A.A.4
Alhamed, Y.A.5
Zahid, A.H.6
-
10
-
-
84875885472
-
Some existence results on nonlinear fractional differential equations
-
Baleanu, D, Rezapour, S, Mohammadi, H: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 371(1990), 20120144 (2013)
-
(1990)
Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci.
, vol.371
, pp. 20120144
-
-
Baleanu, D.1
Rezapour, S.2
Mohammadi, H.3
-
11
-
-
84876532562
-
On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval
-
Nyamoradi, N, Baleanu, D, Agarwal, RP: On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval. Adv. Math. Phys. 2013, Article ID 823961 (2013)
-
(2013)
Adv. Math. Phys.
, vol.2013
, pp. 823961
-
-
Nyamoradi, N.1
Baleanu, D.2
Agarwal, R.P.3
-
12
-
-
33748901201
-
The Adomian decomposition method for solving partial differential equations of fractal order in finite domains
-
El-Sayed, AMA, Gaber, M: The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A 359, 175-182 (2006)
-
(2006)
Phys. Lett. A
, vol.359
, pp. 175-182
-
-
El-Sayed, A.M.A.1
Gaber, M.2
-
13
-
-
76449102580
-
Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
-
El-Sayed, AMA, Behiry, SH, Raslan, WE: Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation. Comput. Math. Appl. 59, 1759-1765 (2010)
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1759-1765
-
-
El-Sayed, A.M.A.1
Behiry, S.H.2
Raslan, W.E.3
-
14
-
-
10344238128
-
Adomian decomposition: A tool for solving a system of fractional differential equations
-
Daftardar-Gejji, V, Jafari, H: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508-518 (2005)
-
(2005)
J. Math. Anal. Appl.
, vol.301
, Issue.2
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
15
-
-
0007140364
-
A new approach to nonlinear partial differential equations
-
He, JH: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 230-235 (1997)
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, pp. 230-235
-
-
He, J.H.1
-
16
-
-
77953478991
-
Fractional variational iteration method and its application
-
Wu, G, Lee, EWM: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506-2509 (2010)
-
(2010)
Phys. Lett. A
, vol.374
, pp. 2506-2509
-
-
Wu, G.1
Lee, E.W.M.2
-
17
-
-
78650881841
-
The fractional variational iteration method using He's polynomials
-
Guo, S, Mei, L: The fractional variational iteration method using He's polynomials. Phys. Lett. A 375, 309-313 (2011)
-
(2011)
Phys. Lett. A
, vol.375
, pp. 309-313
-
-
Guo, S.1
Mei, L.2
-
18
-
-
84875378030
-
Variational iteration method for the Burgers' flow with fractional derivatives - new Lagrange multipliers
-
Wu, GC, Baleanu, D: Variational iteration method for the Burgers' flow with fractional derivatives - new Lagrange multipliers. Appl. Math. Model. 37, 6183-6190 (2013)
-
(2013)
Appl. Math. Model.
, vol.37
, pp. 6183-6190
-
-
Wu, G.C.1
Baleanu, D.2
-
19
-
-
84871756844
-
A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials
-
Jafari, H, Tajadodi, H, Baleanu, D: A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fract. Calc. Appl. Anal. 16(1), 109-122 (2013)
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 109-122
-
-
Jafari, H.1
Tajadodi, H.2
Baleanu, D.3
-
20
-
-
84861715300
-
Solutions of the fractional Davey-Stewartson equations with variational iteration method
-
Jafari, H, Kadem, A, Baleanu, D, Yilmaz, T: Solutions of the fractional Davey-Stewartson equations with variational iteration method. Rom. Rep. Phys. 64(2), 337-346 (2012)
-
(2012)
Rom. Rep. Phys.
, vol.64
, Issue.2
, pp. 337-346
-
-
Jafari, H.1
Kadem, A.2
Baleanu, D.3
Yilmaz, T.4
-
21
-
-
84890924971
-
Analytical solutions of nonlinear fractional differential equations using variational iteration method
-
Jafari, H, Khalique, CM: Analytical solutions of nonlinear fractional differential equations using variational iteration method. J. Nonlinear Syst. Appl. 2(3-4), 148-151 (2011)
-
(2011)
J. Nonlinear Syst. Appl.
, vol.2
, Issue.3-4
, pp. 148-151
-
-
Jafari, H.1
Khalique, C.M.2
-
22
-
-
84871731748
-
He's variational iteration method for solving fractional Riccati differential equation
-
Jafari, H, Tajadodi, H: He's variational iteration method for solving fractional Riccati differential equation. Int. J. Differ. Equ. 2010, Article ID 764738 (2010)
-
(2010)
Int. J. Differ. Equ.
, vol.2010
, pp. 764738
-
-
Jafari, H.1
Tajadodi, H.2
-
23
-
-
0032672778
-
Homotopy perturbation technique
-
He, JH: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257-262 (1999)
-
(1999)
Comput. Methods Appl. Mech. Eng.
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
24
-
-
0033702384
-
A coupling method of homotopy technique and a perturbation technique for non-linear problems
-
He, JH: A coupling method of homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35, 37-43 (2000)
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 37-43
-
-
He, J.H.1
-
25
-
-
61449220353
-
Application of the homotopy perturbation method for coupled system of partial differential equations with time fractional derivatives
-
Ganji, ZZ, Ganji, DD, Jafari, H, Rostamian, M: Application of the homotopy perturbation method for coupled system of partial differential equations with time fractional derivatives. Topol. Methods Nonlinear Anal. 31(2), 341-348 (2008)
-
(2008)
Topol. Methods Nonlinear Anal.
, vol.31
, Issue.2
, pp. 341-348
-
-
Ganji, Z.Z.1
Ganji, D.D.2
Jafari, H.3
Rostamian, M.4
-
26
-
-
35348938590
-
Solving fractional diffusion and wave equations by modified homotopy perturbation method
-
Jafari, H, Momani, Sh: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 370, 388-396 (2007)
-
(2007)
Phys. Lett. A
, vol.370
, pp. 388-396
-
-
Jafari, H.1
Momani, Sh.2
-
27
-
-
36549063424
-
Fractional Green function for linear time-fractional equations of fractional order
-
Odibat, Z, Momani, S: Fractional Green function for linear time-fractional equations of fractional order. Appl. Math. Lett. 21, 194-199 (2008)
-
(2008)
Appl. Math. Lett.
, vol.21
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
28
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui, M: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792-7804 (2009)
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
29
-
-
55649099424
-
A finite element solution for the fractional advection-dispersion equation
-
Huang, Q, Huang, G, Zhan, H: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578-1589 (2008)
-
(2008)
Adv. Water Resour.
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
30
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
Zhang, S, Zhang, HQ: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069-1073 (2011)
-
(2011)
Phys. Lett. A
, vol.375
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.Q.2
-
31
-
-
84855193408
-
The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics
-
2012
-
Guo, SM, Mei, LQ, Li, Y, Sun, YF: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376(2012), 407-411 (2012)
-
(2012)
Phys. Lett. A
, vol.376
, pp. 407-411
-
-
Guo, S.M.1
Mei, L.Q.2
Li, Y.3
Sun, Y.F.4
-
32
-
-
84861576550
-
Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations
-
Lu, B: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045-2048 (2012)
-
(2012)
Phys. Lett. A
, vol.376
, pp. 2045-2048
-
-
Lu, B.1
-
33
-
-
84864025292
-
The first integral method for some time fractional differential equations
-
Lu, B: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684-693 (2012)
-
(2012)
J. Math. Anal. Appl.
, vol.395
, pp. 684-693
-
-
Lu, B.1
-
34
-
-
84870265361
-
(G′/G)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics
-
Zheng, B: (G′/G)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623-630 (2012)
-
(2012)
Commun. Theor. Phys.
, vol.58
, pp. 623-630
-
-
Zheng, B.1
-
35
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie, G: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367-1376 (2006)
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
36
-
-
37549033511
-
The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
Wang, ML, Li, XZ, Zhang, JL: The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008)
-
(2008)
Phys. Lett. A
, vol.372
, pp. 417-423
-
-
Wang, M.L.1
Li, X.Z.2
Zhang, J.L.3
-
37
-
-
55949087342
-
Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations
-
Wang, ML, Zhang, JL, Li, XZ: Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations. Appl. Math. Comput. 206, 321-326 (2008)
-
(2008)
Appl. Math. Comput.
, vol.206
, pp. 321-326
-
-
Wang, M.L.1
Zhang, J.L.2
Li, X.Z.3
-
38
-
-
70449524234
-
Discrete exact solutions to some nonlinear differential-difference equations via the (G′/G)-expansion method
-
Aslan, I: Discrete exact solutions to some nonlinear differential- difference equations via the (G′/G)-expansion method. Appl. Math. Comput. 215, 3140-3147 (2009)
-
(2009)
Appl. Math. Comput.
, vol.215
, pp. 3140-3147
-
-
Aslan, I.1
-
39
-
-
84859155202
-
The (G′/G)-expansion method for the nonlinear lattice equations
-
Ayhan, B, Bekir, A: The (G′/G)-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3490-3498 (2012)
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 3490-3498
-
-
Ayhan, B.1
Bekir, A.2
-
40
-
-
62549122061
-
New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method
-
Kong, CC, Wang, D, Song, LN, Zhang, HQ: New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method. Chaos Solitons Fractals 39, 697-706 (2009)
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 697-706
-
-
Kong, C.C.1
Wang, D.2
Song, L.N.3
Zhang, H.Q.4
-
41
-
-
0344465033
-
Generalized transformations and abundant new families of exact solutions for (2 + 1)-dimensional dispersive long wave equations
-
Yan, ZY: Generalized transformations and abundant new families of exact solutions for (2 + 1)-dimensional dispersive long wave equations. Comput. Math. Appl. 46, 1363-1372 (2003)
-
(2003)
Comput. Math. Appl.
, vol.46
, pp. 1363-1372
-
-
Yan, Z.Y.1
-
42
-
-
11144260805
-
New multisoliton solutions of the (2 + 1)-dimensional dispersive long wave equations
-
Zhang, JF, Han, P: New multisoliton solutions of the (2 + 1)-dimensional dispersive long wave equations. Commun. Nonlinear Sci. Numer. Simul. 6, 178-182 (2001)
-
(2001)
Commun. Nonlinear Sci. Numer. Simul.
, vol.6
, pp. 178-182
-
-
Zhang, J.F.1
Han, P.2
-
43
-
-
81555214719
-
Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation
-
Eslami, M, Neyrame, A, Ebrahimi, M: Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation. J. King Saud Univ, Comput. Inf. Sci. 24, 69-71 (2012)
-
(2012)
J. King Saud Univ, Comput. Inf. Sci.
, vol.24
, pp. 69-71
-
-
Eslami, M.1
Neyrame, A.2
Ebrahimi, M.3
-
44
-
-
25144481359
-
A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation
-
Chen, Y, Wang, Q: A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation. Appl. Math. Comput. 167, 919-929 (2005)
-
(2005)
Appl. Math. Comput.
, vol.167
, pp. 919-929
-
-
Chen, Y.1
Wang, Q.2
-
45
-
-
19444365777
-
An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation
-
Wang, Q, Chen, Y, Zhang, HQ: An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation. Phys. Lett. A 340, 411-426 (2005)
-
(2005)
Phys. Lett. A
, vol.340
, pp. 411-426
-
-
Wang, Q.1
Chen, Y.2
Zhang, H.Q.3
-
46
-
-
1242285571
-
Symbolic computation and construction of soliton-like solutions to the (2 + 1)-dimensional dispersive long-wave equations
-
Chen, Y, Li, B: Symbolic computation and construction of soliton-like solutions to the (2 + 1)-dimensional dispersive long-wave equations. Int. J. Eng. Sci. 42, 715-724 (2004)
-
(2004)
Int. J. Eng. Sci.
, vol.42
, pp. 715-724
-
-
Chen, Y.1
Li, B.2
-
47
-
-
57549089842
-
New exact solutions and conservation laws of the (2 + 1)-dimensional dispersive long wave equations
-
Liu, N, Liu, XQ, Lu, HL: New exact solutions and conservation laws of the (2 + 1)-dimensional dispersive long wave equations. Phys. Lett. A 373, 214-220 (2009)
-
(2009)
Phys. Lett. A
, vol.373
, pp. 214-220
-
-
Liu, N.1
Liu, X.Q.2
Lu, H.L.3
-
48
-
-
70350572849
-
Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations
-
Zhang, S, Tong, JL, Wang, W: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations. Comput. Math. Appl. 58, 2294-2299 (2009)
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2294-2299
-
-
Zhang, S.1
Tong, J.L.2
Wang, W.3
-
49
-
-
33744998187
-
Exact solution for (2 + 1)-dimension nonlinear dispersive long wave equation
-
Zhou, YQ, Liu, Q, Zhang, J, Zhang, WN: Exact solution for (2 + 1)-dimension nonlinear dispersive long wave equation. Appl. Math. Comput. 177, 495-499 (2006)
-
(2006)
Appl. Math. Comput.
, vol.177
, pp. 495-499
-
-
Zhou, Y.Q.1
Liu, Q.2
Zhang, J.3
Zhang, W.N.4
-
50
-
-
18844387420
-
The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation
-
Yomba, E: The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 26, 785-794 (2005)
-
(2005)
Chaos Solitons Fractals
, vol.26
, pp. 785-794
-
-
Yomba, E.1
-
51
-
-
4644280569
-
A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation
-
Chen, Y, Wang, Q: A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 23, 801-807 (2005)
-
(2005)
Chaos Solitons Fractals
, vol.23
, pp. 801-807
-
-
Chen, Y.1
Wang, Q.2
-
52
-
-
33645846944
-
Symbolic computation and new families of exact solutions to the (2 + 1)-dimensional dispersive long-wave equations
-
Zeng, X, Zeng, J: Symbolic computation and new families of exact solutions to the (2 + 1)-dimensional dispersive long-wave equations. Chaos Solitons Fractals 29, 1115-1120 (2006)
-
(2006)
Chaos Solitons Fractals
, vol.29
, pp. 1115-1120
-
-
Zeng, X.1
Zeng, J.2
-
53
-
-
33749573230
-
The periodic wave solutions for the (2 + 1)-dimensional dispersive long water equations
-
Zhang, S: The periodic wave solutions for the (2 + 1)-dimensional dispersive long water equations. Chaos Solitons Fractals 32, 847-854 (2007)
-
(2007)
Chaos Solitons Fractals
, vol.32
, pp. 847-854
-
-
Zhang, S.1
-
54
-
-
55949098139
-
Exact soliton solutions for the fifth-order Sawada-Kotera equation
-
Liu, CF, Dai, ZD: Exact soliton solutions for the fifth-order Sawada-Kotera equation. Appl. Math. Comput. 206, 272-275 (2008)
-
(2008)
Appl. Math. Comput.
, vol.206
, pp. 272-275
-
-
Liu, C.F.1
Dai, Z.D.2
|