메뉴 건너뛰기




Volumn , Issue , 2013, Pages 156-161

Dimension reduction with randomized anisotropic transform for hyperspectral image classification

Author keywords

Anistropic Transform; Dimension Reduction; Hyperspectral Image; Random Projection; Randomized Anisotropic Transform

Indexed keywords

ANISTROPIC; DIMENSION REDUCTION; HIGH-DIMENSIONAL DATA ANALYSIS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE CLASSIFICATION; HYPERSPECTRAL IMAGE DATAS; HYPERSPECTRAL REMOTE SENSING IMAGE; RANDOM PROJECTIONS;

EID: 84888858813     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CYBConf.2013.6617465     Document Type: Conference Paper
Times cited : (5)

References (18)
  • 1
    • 50149118198 scopus 로고    scopus 로고
    • A demonstration of hyperspectral image exploitation for military applications
    • 2007 10th International Conference on, july
    • J.-P. Ardouin, J. Levesque, and T. Rea, "A demonstration of hyperspectral image exploitation for military applications," in Information Fusion, 2007 10th International Conference on, july 2007, pp. 1-8.
    • (2007) Information Fusion , pp. 1-8
    • Ardouin, J.-P.1    Levesque, J.2    Rea, T.3
  • 2
    • 84866641912 scopus 로고    scopus 로고
    • Research advance on band selection-based dimension reduction of hyperspectral remote sensing images
    • 2012 2nd International Conference on, june
    • Y. Wang, S. Huang, D. Liu, and B. Wang, "Research advance on band selection-based dimension reduction of hyperspectral remote sensing images," in Remote Sensing, Environment and Transportation Engineering (RSETE), 2012 2nd International Conference on, june 2012, pp. 1-4.
    • (2012) Remote Sensing, Environment and Transportation Engineering (RSETE) , pp. 1-4
    • Wang, Y.1    Huang, S.2    Liu, D.3    Wang, B.4
  • 3
    • 34948843494 scopus 로고    scopus 로고
    • Target detection for hyperspectral images using ica-based feature extraction
    • IGARSS 2006. IEEE International Conference on, 31 2006-aug. 4
    • C. Wang, J. Zhang, and Y. Gu, "Target detection for hyperspectral images using ica-based feature extraction," in Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on, 31 2006-aug. 4 2006, pp. 850-853.
    • (2006) Geoscience and Remote Sensing Symposium, 2006 , pp. 850-853
    • Wang, C.1    Zhang, J.2    Gu, Y.3
  • 4
    • 79957511061 scopus 로고    scopus 로고
    • Statistical inference in pca for hyperspectral images
    • IEEE Journal of june
    • P. Bajorski, "Statistical inference in pca for hyperspectral images," Selected Topics in Signal Processing, IEEE Journal of, Vol. 5, no. 3, pp. 438-445, june 2011.
    • (2011) Selected Topics in Signal Processing , vol.5 , Issue.3 , pp. 438-445
    • Bajorski, P.1
  • 5
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • IEEE Transactions on april
    • W. Li, S. Prasad, J. Fowler, and L. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 50, no. 4, pp. 1185-1198, april 2012.
    • (2012) Geoscience and Remote Sensing , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.3    Bruce, L.4
  • 6
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • IEEE Transactions on april
    • B.-C. Kuo, C.-H. Li, and J.-M. Yang, "Kernel nonparametric weighted feature extraction for hyperspectral image classification," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 47, no. 4, pp. 1139-1155, april 2009.
    • (2009) Geoscience and Remote Sensing , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 7
    • 70349429586 scopus 로고    scopus 로고
    • Multiresolution manifold learning for classification of hyperspectral data
    • IGARSS 2007. IEEE International, july
    • W. Kim, Y. Chen, M. Crawford, J. Tilton, and J. Ghosh, "Multiresolution manifold learning for classification of hyperspectral data," in Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, july 2007, pp. 3785-3788.
    • (2007) Geoscience and Remote Sensing Symposium, 2007 , pp. 3785-3788
    • Kim, W.1    Chen, Y.2    Crawford, M.3    Tilton, J.4    Ghosh, J.5
  • 9
    • 84873133278 scopus 로고    scopus 로고
    • Landmark selection using homogeneity on nonlinear manifolds for unmixing hyperspectral data
    • 2012 IEEE International, july
    • J. Chi and M. Crawford, "Landmark selection using homogeneity on nonlinear manifolds for unmixing hyperspectral data," in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, july 2012, pp. 1373-1376.
    • (2012) Geoscience and Remote Sensing Symposium (IGARSS) , pp. 1373-1376
    • Chi, J.1    Crawford, M.2
  • 10
    • 77956317584 scopus 로고    scopus 로고
    • Generalised supervised local tangent space alignment for hyperspectral image classification
    • 1
    • L. Ma, M. Crawford, and J. Tian, "Generalised supervised local tangent space alignment for hyperspectral image classification," Electronics Letters, Vol. 46, no. 7, pp. 497-498, 1 2010.
    • (2010) Electronics Letters , vol.46 , Issue.7 , pp. 497-498
    • Ma, L.1    Crawford, M.2    Tian, J.3
  • 11
    • 79959917007 scopus 로고    scopus 로고
    • A linear maximum variance unfolding algorithm and its application in image recognition
    • 2011 International Conference on, april
    • S. Jiang, J. Zhang, and C. Kuang, "A linear maximum variance unfolding algorithm and its application in image recognition," in Electric Information and Control Engineering (ICEICE), 2011 International Conference on, april 2011, pp. 36-39.
    • (2011) Electric Information and Control Engineering (ICEICE) , pp. 36-39
    • Jiang, S.1    Zhang, J.2    Kuang, C.3
  • 12
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based-nearest-neighbor for hyperspectral image classification
    • IEEE Transactions on nov.
    • L. Ma, M. Crawford, and J. Tian, "Local manifold learning-based-nearest-neighbor for hyperspectral image classification," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 48, no. 11, pp. 4099-4109, nov. 2010.
    • (2010) Geoscience and Remote Sensing , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.2    Tian, J.3
  • 13
    • 84888876217 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral imagery data for featureclassification
    • W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg http://dx.doi.org/10.1007/978-3-642-01546-534
    • C. K. Chui and J. Wang, "Dimensionality reduction of hyperspectral imagery data for featureclassification," in Handbook of Geomathematics, W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg, 2010, pp. 1005-1047. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-01546-534
    • (2010) Handbook of Geomathematics , pp. 1005-1047
    • Chui, C.K.1    Wang, J.2
  • 14
    • 79952312165 scopus 로고    scopus 로고
    • Randomized anisotropic transform for nonlinear dimensionality reduction
    • http://dx.doi.org/10.1007/s13137-010-0004-8
    • C. Chui and J. Wang, "Randomized anisotropic transform for nonlinear dimensionality reduction," GEM - International Journal on Geomathematics, Vol. 1, pp. 23-50, 2010. [Online]. Available: http://dx.doi.org/10.1007/s13137- 010-0004-8
    • (2010) GEM - International Journal on Geomathematics , vol.1 , pp. 23-50
    • Chui, C.1    Wang, J.2
  • 15
    • 80054910809 scopus 로고    scopus 로고
    • Maximal linear embedding for dimensionality reduction
    • IEEE Transactions on sept.
    • R. Wang, S. Shan, X. Chen, J. Chen, and W. Gao, "Maximal linear embedding for dimensionality reduction," Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 33, no. 9, pp. 1776-1792, sept. 2011.
    • (2011) Pattern Analysis and Machine Intelligence , vol.33 , Issue.9 , pp. 1776-1792
    • Wang, R.1    Shan, S.2    Chen, X.3    Chen, J.4    Gao, W.5
  • 16
    • 10044232061 scopus 로고
    • The analytical solution of the additive constant problem
    • http://dx.doi.org/10.1007/BF02294026
    • F. Cailliez, "The analytical solution of the additive constant problem," Psychometrika, Vol. 48, pp. 305-308, 1983. [Online]. Available: http://dx.doi.org/10.1007/BF02294026
    • (1983) Psychometrika , vol.48 , pp. 305-308
    • Cailliez, F.1
  • 17
    • 84863455923 scopus 로고    scopus 로고
    • Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyper-spectral images using k-nn classifier
    • nov.
    • M. Hasanlou and F. Samadzadegan, "Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyper-spectral images using k-nn classifier," Geoscience and Remote Sensing Letters, IEEE, Vol. 9, no. 6, pp. 1046-1050, nov. 2012.
    • (2012) Geoscience and Remote Sensing Letters, IEEE , vol.9 , Issue.6 , pp. 1046-1050
    • Hasanlou, M.1    Samadzadegan, F.2
  • 18
    • 78049257799 scopus 로고    scopus 로고
    • Linear spectral mixture analysis based approaches to estimation of virtual dimensionality in hyperspectral imagery
    • IEEE Transactions on nov.
    • C.-I. Chang, W. Xiong, W. Liu, M.-L. Chang, C.-C. Wu, and C.-C. Chen, "Linear spectral mixture analysis based approaches to estimation of virtual dimensionality in hyperspectral imagery," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 48, no. 11, pp. 3960-3979, nov. 2010.
    • (2010) Geoscience and Remote Sensing , vol.48 , Issue.11 , pp. 3960-3979
    • Chang, C.-I.1    Xiong, W.2    Liu, W.3    Chang, M.-L.4    Wu, C.-C.5    Chen, C.-C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.