메뉴 건너뛰기




Volumn 9, Issue 12, 2013, Pages 1972-1983

In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel

Author keywords

Agar Gelatin hydrogel; Biocompatibility; Bone tissue engineering; Carbonated apatite; Self Assembly

Indexed keywords

ALKALINE PHOSPHATASE ACTIVITY; APATITE CRYSTALS; BIOMIMETIC SYNTHESIS; BONE ENGINEERING; BONE TISSUE ENGINEERING; CARBONATED APATITE; PHYSIOLOGICAL TEMPERATURE; RESEARCH EFFORTS;

EID: 84888780641     PISSN: 15507033     EISSN: 15507041     Source Type: Journal    
DOI: 10.1166/jbn.2013.1707     Document Type: Article
Times cited : (13)

References (55)
  • 2
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: State of the art and future trend
    • A. J. Salgado, O. P. Coutinho, and R. L. Reis, Bone tissue engineering: State of the art and future trend. Macromol. Biosci. 4, 743 (2004).
    • (2004) Macromol. Biosci. , vol.4 , pp. 743
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 3
    • 0032029664 scopus 로고    scopus 로고
    • Mechanical properties and the hierarchical structure of bone
    • J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).
    • (1998) Med. Eng. Phys. , vol.20 , pp. 92
    • Rho, J.Y.1    Kuhn-Spearing, L.2    Zioupos, P.3
  • 6
    • 84555203304 scopus 로고    scopus 로고
    • Salts responsive nanovesicles through π-stacking induced self-assembly of backbone modified tripeptides
    • P. Koley, M. G. B. Drew, and A. Pramanik, Salts responsive nanovesicles through π-stacking induced self-assembly of backbone modified tripeptides. J. Nanosci. Nanotechnol. 11, 6747 (2011).
    • (2011) J. Nanosci. Nanotechnol. , vol.11 , pp. 6747
    • Koley, P.1    Drew, M.G.B.2    Pramanik, A.3
  • 7
    • 84865115435 scopus 로고    scopus 로고
    • Stimulation of minerals by carbon nanotube grafted glucosamine in mouse mesenchymal stem cells for bone tissue engineering
    • J. Venkatesan and S. K. Kim, Stimulation of minerals by carbon nanotube grafted glucosamine in mouse mesenchymal stem cells for bone tissue engineering. J. Biomed. Nanotechnol. 8, 676 (2012).
    • (2012) J. Biomed. Nanotechnol. , vol.8 , pp. 676
    • Venkatesan, J.1    Kim, S.K.2
  • 8
    • 80052880249 scopus 로고    scopus 로고
    • The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process
    • N. Jamilpour, A. Fereidoon, and G. Rouhi, The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process. J. Biomed. Nanotechnol. 7, 542 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 542
    • Jamilpour, N.1    Fereidoon, A.2    Rouhi, G.3
  • 9
    • 84861476530 scopus 로고    scopus 로고
    • Synthesis and characterization of chitosan/chondroitin sulfate/nano-Sio2 composite scaffold for bone tissue engineering
    • K. C. Kavya, R. Dixit, R. Jayakumar, S. V. Nair, and K. P. Chennazhi, Synthesis and characterization of chitosan/chondroitin sulfate/nano-Sio2 composite scaffold for bone tissue engineering. J. Biomed. Nanotechnol. 8, 149 (2012).
    • (2012) J. Biomed. Nanotechnol. , vol.8 , pp. 149
    • Kavya, K.C.1    Dixit, R.2    Jayakumar, R.3    Nair, S.V.4    Chennazhi, K.P.5
  • 11
    • 33744508015 scopus 로고    scopus 로고
    • A review of nanotechnology for the development of better orthopedic implants
    • G. E. Park and T. J. Webster, A review of nanotechnology for the development of better orthopedic implants. J. Biomed. Nanotechnol. 1, 18 (2005).
    • (2005) J. Biomed. Nanotechnol. , vol.1 , pp. 18
    • Park, G.E.1    Webster, T.J.2
  • 12
    • 84861146688 scopus 로고    scopus 로고
    • Evaluation of osteoinduction and proliferation on nano-Sr-HAP: A novel orthopedic biomaterial for bone tissue regeneration
    • Y. Hao, H. Yan, X. Wang, B. Zhu, C. Ning, and S. Ge, Evaluation of osteoinduction and proliferation on nano-Sr-HAP: A novel orthopedic biomaterial for bone tissue regeneration. J. Nanosci. Nanotechnol. 12, 207 (2012).
    • (2012) J. Nanosci. Nanotechnol. , vol.12 , pp. 207
    • Hao, Y.1    Yan, H.2    Wang, X.3    Zhu, B.4    Ning, C.5    Ge, S.6
  • 13
    • 84856851608 scopus 로고    scopus 로고
    • Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin
    • G. D. Venkatasubbu, S. Ramasamy, V. Ramakrishnan, and J. Kumar, Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin. J. Biomed. Nanotechnol. 7, 759 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 759
    • Venkatasubbu, G.D.1    Ramasamy, S.2    Ramakrishnan, V.3    Kumar, J.4
  • 14
    • 77955509489 scopus 로고    scopus 로고
    • Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process
    • P. Wang, C. Li, H. Gong, X. Jiang, H. Wang, and K. Li, Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203, 315 (2010).
    • (2010) Powder Technol. , vol.203 , pp. 315
    • Wang, P.1    Li, C.2    Gong, H.3    Jiang, X.4    Wang, H.5    Li, K.6
  • 15
    • 0345725783 scopus 로고    scopus 로고
    • Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powder
    • R. R. Rao, H. N. Roopa, and T. S. Kannan, Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powder. J. Mater. Sci-Mater. M. 8, 511 (1997).
    • (1997) J. Mater. Sci-Mater. M. , vol.8 , pp. 511
    • Rao, R.R.1    Roopa, H.N.2    Kannan, T.S.3
  • 16
    • 2342492367 scopus 로고    scopus 로고
    • Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing
    • T. Miyazaki, C. Ohtsuki, and M. Tanihara, Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing. J. Nanosci. Nanotechnol. 3, 511 (2003).
    • (2003) J. Nanosci. Nanotechnol. , vol.3 , pp. 511
    • Miyazaki, T.1    Ohtsuki, C.2    Tanihara, M.3
  • 17
    • 84860228570 scopus 로고    scopus 로고
    • Effects of four types of hydroxyapatite nanoparticles with different nanocystal morphologies and sizes on apoptosis in rat osteoblasts
    • Z. Xu, C. Liu, J. Wei, and J. Sun, Effects of four types of hydroxyapatite nanoparticles with different nanocystal morphologies and sizes on apoptosis in rat osteoblasts. J. Appl. Toxicol. 32, 429 (2012).
    • (2012) J. Appl. Toxicol. , vol.32 , pp. 429
    • Xu, Z.1    Liu, C.2    Wei, J.3    Sun, J.4
  • 20
    • 56049124044 scopus 로고    scopus 로고
    • Increased skeletal muscle cell and osteoblast numbers on hydrothermally-treated nanohydroxyapatite/collagen type I composites for entheses applications
    • V. Perla, M. Sato, and T. J. Webster, Increased skeletal muscle cell and osteoblast numbers on hydrothermally-treated nanohydroxyapatite/collagen type I composites for entheses applications. J. Biomed. Nanotechnol. 1, 297 (2005).
    • (2005) J. Biomed. Nanotechnol. , vol.1 , pp. 297
    • Perla, V.1    Sato, M.2    Webster, T.J.3
  • 22
    • 60549101494 scopus 로고    scopus 로고
    • Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
    • X. Liu, L. A. Smith, J. Hu, and P. X. Ma, Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30, 2252 (2009).
    • (2009) Biomaterials , vol.30 , pp. 2252
    • Liu, X.1    Smith, L.A.2    Hu, J.3    Ma, P.X.4
  • 23
    • 80052325730 scopus 로고    scopus 로고
    • In situ biomimetic synthesis and characterization of nano Hydroxyapatite in gelatin matrix
    • M. Sadjadi, M. Meskinfam, B. Sadeghi, H. Jazdarreh, and K. Zare, In situ biomimetic synthesis and characterization of nano Hydroxyapatite in gelatin matrix. J. Biomed. Nanotechnol. 7, 450 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 450
    • Sadjadi, M.1    Meskinfam, M.2    Sadeghi, B.3    Jazdarreh, H.4    Zare, K.5
  • 24
    • 77955271377 scopus 로고    scopus 로고
    • Self assembled bi-functional peptide hydrogels with biomineralization- directing peptides
    • M. Gungormus, M. Branco, H. Fong, J. P. Schneider, C. Tamerler, and M. Sarikaya, Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials 31, 7266 (2010).
    • (2010) Biomaterials , vol.31 , pp. 7266
    • Gungormus, M.1    Branco, M.2    Fong, H.3    Schneider, J.P.4    Tamerler, C.5    Sarikaya, M.6
  • 25
    • 84858052742 scopus 로고    scopus 로고
    • Biomimetic mineralization of acid polysaccharide-based hydrogels: Towards porous 3-dimensional bone-like biocomposites
    • C. Zhong and C. C. Chu, Biomimetic mineralization of acid polysaccharide-based hydrogels: Towards porous 3-dimensional bone-like biocomposites. J. Mater. Chem. 22, 6080 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 6080
    • Zhong, C.1    Chu, C.C.2
  • 26
    • 33847714194 scopus 로고    scopus 로고
    • Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite
    • S. Gajjeraman, K. Narayanan, J. Hao, C. Qin, and A. George, Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J. Biol. Chem. 282, 1193 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 1193
    • Gajjeraman, S.1    Narayanan, K.2    Hao, J.3    Qin, C.4    George, A.5
  • 27
    • 12944304637 scopus 로고    scopus 로고
    • Diffusion systems for evaluation of biomineralization
    • L. Silverman and A. L. Boskey, Diffusion systems for evaluation of biomineralization. Calcif . Tissue. Int. 75, 494 (2004).
    • (2004) Calcif. Tissue. Int. , vol.75 , pp. 494
    • Silverman, L.1    Boskey, A.L.2
  • 28
    • 2342631323 scopus 로고    scopus 로고
    • Induction of apatite by the cooperative Effect of amelogenin and the 32-kDa enamelin
    • N. Bouropoulos and J. Moradian-Oldak, Induction of apatite by the cooperative Effect of amelogenin and the 32-kDa enamelin. J. Dent. Res. 83, 278 (2004).
    • (2004) J. Dent. Res. , vol.83 , pp. 278
    • Bouropoulos, N.1    Moradian-Oldak, J.2
  • 29
    • 4043142030 scopus 로고    scopus 로고
    • Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique: The influence of fluoride
    • C. Gobel, P. Simon, J. Buder, H. Tlatlik, and R. Kniep, Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique: the influence of fluoride. J. Mater. Chem. 14, 2225 (2004).
    • (2004) J. Mater. Chem. , vol.14 , pp. 2225
    • Gobel, C.1    Simon, P.2    Buder, J.3    Tlatlik, H.4    Kniep, R.5
  • 30
    • 45849130195 scopus 로고    scopus 로고
    • Fabrication of a Biomimetic compound containing nano hydroxyapatite- demineralised bone matrix
    • J. Sundaraseelan and T. Sastry, Fabrication of a Biomimetic compound containing nano hydroxyapatite-demineralised bone matrix. J. Biomed. Nanotechnol. 3, 401 (2007).
    • (2007) J. Biomed. Nanotechnol. , vol.3 , pp. 401
    • Sundaraseelan, J.1    Sastry, T.2
  • 31
    • 50249139638 scopus 로고    scopus 로고
    • Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process
    • A. Ethirajan, U. Ziener, A. Chuvilin, U. Kaiser, H. Cölfen, and K. Landfester, Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Funct. Mater. 18, 2221 (2008).
    • (2008) Adv. Funct. Mater. , vol.18 , pp. 2221
    • Ethirajan, A.1    Ziener, U.2    Chuvilin, A.3    Kaiser, U.4    Cölfen, H.5    Landfester, K.6
  • 32
    • 84876673888 scopus 로고    scopus 로고
    • Biomimetic synthesis and biocompatibility evaluation of carbonated apatites templatemediated by heparin
    • Y. Deng, Y. Sun, X. Chen, P. Zhu, and S. Wei, Biomimetic synthesis and biocompatibility evaluation of carbonated apatites templatemediated by heparin. Mat. Sci. Eng. C 33, 2905 (2013).
    • (2013) Mat. Sci. Eng. C , vol.33 , pp. 2905
    • Deng, Y.1    Sun, Y.2    Chen, X.3    Zhu, P.4    Wei, S.5
  • 33
    • 80052882696 scopus 로고    scopus 로고
    • Preparation and characterization of nano-hydroxyapatite/Poly(vinyl alcohol) composite membranes for guided bone regeneration
    • S. Zeng, S. Fu, G. Guo, H. Liang, Z. Qian, X. Tang, and F. Luo, Preparation and characterization of nano-hydroxyapatite/Poly(vinyl alcohol) composite membranes for guided bone regeneration. J. Biomed. Nanotechnol. 7, 549 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 549
    • Zeng, S.1    Fu, S.2    Guo, G.3    Liang, H.4    Qian, Z.5    Tang, X.6    Luo, F.7
  • 34
    • 0023691514 scopus 로고
    • Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies
    • K. J. Payne and A. Veis, Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers 27, 1749 (1988).
    • (1988) Biopolymers , vol.27 , pp. 1749
    • Payne, K.J.1    Veis, A.2
  • 35
    • 84862190814 scopus 로고    scopus 로고
    • Synthesis of polymer-decorated hydroxyapatite nanoparticles with a dispersed copolymer template
    • J. H. Lee, I. T. Kim, R. Tannenbaum, and M. L. Shofner, Synthesis of polymer-decorated hydroxyapatite nanoparticles with a dispersed copolymer template. J. Mater. Chem. 22, 11556 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 11556
    • Lee, J.H.1    Kim, I.T.2    Tannenbaum, R.3    Shofner, M.L.4
  • 36
    • 32544454007 scopus 로고    scopus 로고
    • Production of ultra-fine bioresorbable carbonated hydroxyapatite
    • R. Murugan and S. Ramakrishna, Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater. 2, 201 (2006).
    • (2006) Acta Biomater. , vol.2 , pp. 201
    • Murugan, R.1    Ramakrishna, S.2
  • 37
    • 0348170776 scopus 로고    scopus 로고
    • Hydroxyapatite/collagen composite materials formation in simulated body fluid environment
    • L. Zhang, X. Feng, H. Liu, D. Qian, L. Zhang, X. Yu, and F. Cui, Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater. Lett. 58, 719 (2004).
    • (2004) Mater. Lett. , vol.58 , pp. 719
    • Zhang, L.1    Feng, X.2    Liu, H.3    Qian, D.4    Zhang, L.5    Yu, X.6    Cui, F.7
  • 38
    • 84876581555 scopus 로고    scopus 로고
    • In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide
    • M. Li, Y. Wang, Q. Liu, Q. Li, Y. Cheng, Y. Zheng, T. Xi, and S. Wei, In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J. Mater. Chem. B 1, 475 (2013).
    • (2013) J. Mater. Chem. B , vol.1 , pp. 475
    • Li, M.1    Wang, Y.2    Liu, Q.3    Li, Q.4    Cheng, Y.5    Zheng, Y.6    Xi, T.7    Wei, S.8
  • 39
    • 0038417070 scopus 로고    scopus 로고
    • Preparation of hydroxyapatite-gelatin nanocomposite
    • M. C. Chang, C.-C. Ko, and W. H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24, 2853 (2003).
    • (2003) Biomaterials , vol.24 , pp. 2853
    • Chang, M.C.1    Ko, C.-C.2    Douglas, W.H.3
  • 41
    • 84866758763 scopus 로고    scopus 로고
    • Hierarchically nanostructured hydroxyapatite: Hydrothermal synthesis, morphology control, growth mechanism, and biological activity
    • M. G. Ma, Hierarchically nanostructured hydroxyapatite: Hydrothermal synthesis, morphology control, growth mechanism, and biological activity. Int. J. Nanomed. 7, 1781 (2012).
    • (2012) Int. J. Nanomed. , vol.7 , pp. 1781
    • Ma, M.G.1
  • 42
    • 84888778621 scopus 로고    scopus 로고
    • Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices
    • G. Falini, M. Gazzano, and A. Ripamonti, Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices. J. Mater. Chem. 535, 2 (2000).
    • (2000) J. Mater. Chem. , vol.535 , pp. 2
    • Falini, G.1    Gazzano, M.2    Ripamonti, A.3
  • 43
    • 84857169756 scopus 로고    scopus 로고
    • Synthesis and cellular biocompatibility of two nanophase hydroxyapatite with different Ca/P ratio
    • Y. Zhao, Y. Zhang, Y. Zhao, S. Hou, and P. K. Chu, Synthesis and cellular biocompatibility of two nanophase hydroxyapatite with different Ca/P ratio. J. Nanosci. Nanotechnol. 11, 11069 (2011).
    • (2011) J. Nanosci. Nanotechnol. , vol.11 , pp. 11069
    • Zhao, Y.1    Zhang, Y.2    Zhao, Y.3    Hou, S.4    Chu, P.K.5
  • 44
    • 36148941334 scopus 로고    scopus 로고
    • Effect of extracting time and temperature on yield of gelatin from different fish offal
    • I. Kilodziejska, E. Skierka, M. Sadowska, W. Kolodziejski, and C. Niecikowska, Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chem. 107, 700 (2008).
    • (2008) Food Chem. , vol.107 , pp. 700
    • Kilodziejska, I.1    Skierka, E.2    Sadowska, M.3    Kolodziejski, W.4    Niecikowska, C.5
  • 45
    • 53449084638 scopus 로고    scopus 로고
    • Controlled synthesis of plateshaped hydroxyapatite and implications for the morphology of the apatite phase in bone
    • B. Viswanath and N. Ravishankar, Controlled synthesis of plateshaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials 29, 4855 (2008).
    • (2008) Biomaterials , vol.29 , pp. 4855
    • Viswanath, B.1    Ravishankar, N.2
  • 46
    • 20344395600 scopus 로고    scopus 로고
    • Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure
    • H. Chen, B. H. Clarkson, K. Sun, and J. F. Mansfield, Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid. Interf. Sci. 288, 97 (2005).
    • (2005) J. Colloid. Interf. Sci. , vol.288 , pp. 97
    • Chen, H.1    Clarkson, B.H.2    Sun, K.3    Mansfield, J.F.4
  • 47
    • 84862931627 scopus 로고    scopus 로고
    • Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering
    • C. He, F. Zhang, L. Cao, W. Feng, K. Qiu, Y. Zhang, H. Wang, X. Mo, and J. Wang, Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J. Mater. Chem. 22, 2111 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 2111
    • He, C.1    Zhang, F.2    Cao, L.3    Feng, W.4    Qiu, K.5    Zhang, Y.6    Wang, H.7    Mo, X.8    Wang, J.9
  • 48
    • 0022272805 scopus 로고
    • Proteoglycan structure and function as related to atherosclerosisa
    • W. D. Wagner, Proteoglycan structure and function as related to atherosclerosisa. Ann. NY. Acad. Sci. 454, 52 (1985).
    • (1985) Ann. NY. Acad. Sci. , vol.454 , pp. 52
    • Wagner, W.D.1
  • 49
    • 0035387732 scopus 로고    scopus 로고
    • Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent
    • M. C. Chang, T. Ikoma, M. Kikuchi, and J. Tanaka, Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J. Mater. Sci. Lett. 20, 1199 (2001).
    • (2001) J. Mater. Sci. Lett. , vol.20 , pp. 1199
    • Chang, M.C.1    Ikoma, T.2    Kikuchi, M.3    Tanaka, J.4
  • 52
    • 84870447150 scopus 로고    scopus 로고
    • In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template
    • Q. Li, M. Li, P. Zhu, and S. Wei, In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. J. Mater. Chem. 22, 20257 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 20257
    • Li, Q.1    Li, M.2    Zhu, P.3    Wei, S.4
  • 53
    • 33947334029 scopus 로고
    • Hydrogen held by solids. XII. Hydroxyapatite catalysts
    • J. A. S. Bett, L. G. Christner, and W. K. Hall, Hydrogen held by solids. XII. hydroxyapatite catalysts. J. Am. Chem. Soc. 89, 5535 (1967).
    • (1967) J. Am. Chem. Soc. , vol.89 , pp. 5535
    • Bett, J.A.S.1    Christner, L.G.2    Hall, W.K.3
  • 54
    • 0346282803 scopus 로고    scopus 로고
    • Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses
    • S. Hattar, A. Berdal, A. Asselin, S. Loty, D. Greenspan, and J. Sautier, Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur. Cell Mater. 4, 61 (2002).
    • (2002) Eur. Cell Mater. , vol.4 , pp. 61
    • Hattar, S.1    Berdal, A.2    Asselin, A.3    Loty, S.4    Greenspan, D.5    Sautier, J.6
  • 55
    • 29144520623 scopus 로고    scopus 로고
    • Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration
    • H. W. Kim, J. H. Song, and H. E. Kim, Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv. Funct. Mater. 15, 198 (2005).
    • (2005) Adv. Funct. Mater. , vol.15 , pp. 198
    • Kim, H.W.1    Song, J.H.2    Kim, H.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.