-
2
-
-
0027595948
-
Tissue engineering
-
R. Langer and J. Vacanti, Tissue engineering. Science 260, 920 (1993).
-
(1993)
Science
, vol.260
, pp. 920
-
-
Langer, R.1
Vacanti, J.2
-
3
-
-
33847654340
-
Cell-based bone tissue engineering
-
G. J. Meijer, J. D. De Bruijn, R. Koole, and C. A. Van Blitterswijk, Cell-based bone tissue engineering. PLoS Med. 4, e9 (2007).
-
(2007)
PLoS Med.
, vol.4
-
-
Meijer, G.J.1
De Bruijn, J.D.2
Koole, R.3
Van Blitterswijk, C.A.4
-
4
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
-
(1991)
Nature
, vol.354
, pp. 56
-
-
Iijima, S.1
-
5
-
-
33749558615
-
Carbon nanotube applications for tissue engineering
-
B. S. Harrison and A. Atala, Carbon nanotube applications for tissue engineering. Biomaterials 28, 344 (2007).
-
(2007)
Biomaterials
, vol.28
, pp. 344
-
-
Harrison, B.S.1
Atala, A.2
-
6
-
-
0000636881
-
Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
-
J. Hone, M. Llaguno, N. Nemes, A. Johnson, J. Fischer, D. Walters, M. Casavant, J. Schmidt, and R. Smalley, Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 666
-
-
Hone, J.1
Llaguno, M.2
Nemes, N.3
Johnson, A.4
Fischer, J.5
Walters, D.6
Casavant, M.7
Schmidt, J.8
Smalley, R.9
-
7
-
-
0022345898
-
The responses of cells to electrical fields: A review
-
K. R. Robinson, The responses of cells to electrical fields: A review. J. cell Biol. 101, 2023 (1985).
-
(1985)
J. Cell Biol.
, vol.101
, pp. 2023
-
-
Robinson, K.R.1
-
8
-
-
20744437307
-
A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes
-
B. Zhao, H. Hu, S. K. Mandal, and R. C. Haddon, A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17, 3235 (2005).
-
(2005)
Chem. Mater.
, vol.17
, pp. 3235
-
-
Zhao, B.1
Hu, H.2
Mandal, S.K.3
Haddon, R.C.4
-
9
-
-
58149296511
-
Biodegradation of single-walled carbon nanotubes through enzymatic catalysis
-
B. L. Allen, P. D. Kichambare, P. Gou, I. I. Vlasova, A. A. Kapralov, N. Konduru, V. E. Kagan, and A. Star, Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 3899
-
-
Allen, B.L.1
Kichambare, P.D.2
Gou, P.3
Vlasova, I.I.4
Kapralov, A.A.5
Konduru, N.6
Kagan, V.E.7
Star, A.8
-
10
-
-
39449105764
-
Carbon nanotubes with high bone tissue compatibility and bone formation acceleration effects
-
Y. Usui, K. Aoki, N. Narita, N. Murakami, I. Nakamura, K. Nakamura, N. Ishigaki, H. Yamazaki, H. Horiuchi, and H. Kato, Carbon nanotubes with high bone tissue compatibility and bone formation acceleration effects. Small 4, 240 (2008).
-
(2008)
Small
, vol.4
, pp. 240
-
-
Usui, Y.1
Aoki, K.2
Narita, N.3
Murakami, N.4
Nakamura, I.5
Nakamura, K.6
Ishigaki, N.7
Yamazaki, H.8
Horiuchi, H.9
Kato, H.10
-
11
-
-
77952289829
-
Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation
-
V. E. Kagan, N. V. Konduru, W. Feng, B. L. Allen, J. Conroy, Y. Volkov, I. I. Vlasova, N. A. Belikova, N. Yanamala, A. Kapralov, Y. Y. Tyurina, J. Shi, E. R. Kisin, A. R. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, and A. A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354 (2010).
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 354
-
-
Kagan, V.E.1
Konduru, N.V.2
Feng, W.3
Allen, B.L.4
Conroy, J.5
Volkov, Y.6
Vlasova, I.I.7
Belikova, N.A.8
Yanamala, N.9
Kapralov, A.10
Tyurina, Y.Y.11
Shi, J.12
Kisin, E.R.13
Murray, A.R.14
Franks, J.15
Stolz, D.16
Gou, P.17
Klein-Seetharaman, J.18
Fadeel, B.19
Star, A.20
Shvedova, A.A.21
more..
-
12
-
-
70349319369
-
A review on biodegradable polymeric materials for bone tissue engineering applications
-
M. I. Sabir, X. Xu, and L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44, 5713 (2009).
-
(2009)
J. Mater. Sci.
, vol.44
, pp. 5713
-
-
Sabir, M.I.1
Xu, X.2
Li, L.3
-
13
-
-
78349309040
-
Preparation and characterization of carbon nanotube-grafted-chitosan - Natural hydroxyapatite composite for bone tissue engineering
-
J. Venkatesan, Z.-J. Qian, B. Ryu, N. Ashok Kumar, and S.-K. Kim, Preparation and characterization of carbon nanotube-grafted-chitosan - Natural hydroxyapatite composite for bone tissue engineering. Carbohyd. Polym. 83, 569 (2011).
-
(2011)
Carbohyd. Polym.
, vol.83
, pp. 569
-
-
Venkatesan, J.1
Qian, Z.-J.2
Ryu, B.3
Ashok Kumar, N.4
Kim, S.-K.5
-
14
-
-
0242573190
-
Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture
-
Q. Hu, B. Li, M. Wang, and J. Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials 25, 779 (2004).
-
(2004)
Biomaterials
, vol.25
, pp. 779
-
-
Hu, Q.1
Li, B.2
Wang, M.3
Shen, J.4
-
15
-
-
84655175086
-
Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering
-
R. Pallela, J. Venkatesan, V. R. Janapala, and S. K. Kim, Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. A 100A, 486 (2012).
-
(2012)
J. Biomed. Mater. Res. A
, vol.100 A
, pp. 486
-
-
Pallela, R.1
Venkatesan, J.2
Janapala, V.R.3
Kim, S.K.4
-
16
-
-
20444409137
-
Chitosan: A versatile biopolymer for orthopaedic tissue-engineering
-
A. Di Martino, M. Sittinger, and M. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983 (2005).
-
(2005)
Biomaterials
, vol.26
, pp. 5983
-
-
Di Martino, A.1
Sittinger, M.2
Risbud, M.3
-
17
-
-
33847252081
-
Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan
-
G. Ke, W. Guan, C. Tang, W. Guan, D. Zeng, and F. Deng, Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 8, 322 (2007).
-
(2007)
Biomacromolecules
, vol.8
, pp. 322
-
-
Ke, G.1
Guan, W.2
Tang, C.3
Guan, W.4
Zeng, D.5
Deng, F.6
-
18
-
-
47349095459
-
Conductive macroporous composite chitosan-carbon nanotube scaffolds
-
C. Lau, M. J. Cooney, and P. Atanassov, Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24, 7004 (2008).
-
(2008)
Langmuir
, vol.24
, pp. 7004
-
-
Lau, C.1
Cooney, M.J.2
Atanassov, P.3
-
19
-
-
18544366611
-
Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application
-
X.-L. Luo, J.-J. Xu, J.-L. Wang, and H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169 (2005).
-
(2005)
Chem. Commun.
, vol.16
, pp. 2169
-
-
Luo, X.-L.1
Xu, J.-J.2
Wang, J.-L.3
Chen, H.-Y.4
-
20
-
-
34447542000
-
Manipulated dispersion of carbon nanotubes with derivatives of chitosan
-
J. Zhang, Q. Wang, L. Wang, and A. Wang, Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45, 1917 (2007).
-
(2007)
Carbon
, vol.45
, pp. 1917
-
-
Zhang, J.1
Wang, Q.2
Wang, L.3
Wang, A.4
-
21
-
-
35349030396
-
Multiwall carbon nanotube scaffolds for tissue engineering purposes
-
A. Abarrategi, M. C. Gutiérrez, C. Moreno-Vicente, M. J. Hortigüela, V. Ramos, J. L. López-Lacomba, M. L. Ferrer, and F. del Monte, Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29, 94 (2008).
-
(2008)
Biomaterials
, vol.29
, pp. 94
-
-
Abarrategi, A.1
Gutiérrez, M.C.2
Moreno-Vicente, C.3
Hortigüela, M.J.4
Ramos, V.5
López-Lacomba, J.L.6
Ferrer, M.L.7
Del Monte, F.8
-
22
-
-
28844479693
-
Preparation and mechanical properties of chitosan/carbon nanotubes composites
-
S.-F. Wang, L. Shen, W.-D. Zhang, and Y.-J. Tong, Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067 (2005).
-
(2005)
Biomacromolecules
, vol.6
, pp. 3067
-
-
Wang, S.-F.1
Shen, L.2
Zhang, W.-D.3
Tong, Y.-J.4
-
23
-
-
62949128880
-
Rapid microwave synthesis of chitosan modified carbon nanotube composites
-
J.-G. Yu, K.-L. Huang, J.-C. Tang, Q. Yang, and D.-S. Huang, Rapid microwave synthesis of chitosan modified carbon nanotube composites. Inter. J. Biol. Macromol. 44, 316 (2009).
-
(2009)
Inter. J. Biol. Macromol.
, vol.44
, pp. 316
-
-
Yu, J.-G.1
Huang, K.-L.2
Tang, J.-C.3
Yang, Q.4
Huang, D.-S.5
-
24
-
-
58349119786
-
Synthesis and characterization of chitosan-carbon nanotube composites
-
L. Carson, C. Kelly-Brown, M. Stewart, A. Oki, G. Regisford, Z. Luo, and V. I. Bakhmutov, Synthesis and characterization of chitosan-carbon nanotube composites. Mater. Lett. 63, 617 (2009).
-
(2009)
Mater. Lett.
, vol.63
, pp. 617
-
-
Carson, L.1
Kelly-Brown, C.2
Stewart, M.3
Oki, A.4
Regisford, G.5
Luo, Z.6
Bakhmutov, V.I.7
-
25
-
-
80052880249
-
The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process
-
N. Jamilpour, A. Fereidoon, and G. Rouhi, The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process. J. Biomed. Nanotechnol. 7, 542 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 542
-
-
Jamilpour, N.1
Fereidoon, A.2
Rouhi, G.3
-
26
-
-
68949152510
-
Carbon nanotubes: Biomaterial applications
-
N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, and H. Kato, Carbon nanotubes: Biomaterial applications. Chem. Soc. Rev. 38, 1897 (2009).
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1897
-
-
Saito, N.1
Usui, Y.2
Aoki, K.3
Narita, N.4
Shimizu, M.5
Hara, K.6
Ogiwara, N.7
Nakamura, K.8
Ishigaki, N.9
Kato, H.10
-
27
-
-
4444313518
-
Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes
-
M. Zhang, A. Smith, and W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045 (2004).
-
(2004)
Anal. Chem.
, vol.76
, pp. 5045
-
-
Zhang, M.1
Smith, A.2
Gorski, W.3
-
28
-
-
34247331343
-
Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties
-
Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, and M. Ozaki, Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45, 1212 (2007).
-
(2007)
Carbon
, vol.45
, pp. 1212
-
-
Wu, Z.1
Feng, W.2
Feng, Y.3
Liu, Q.4
Xu, X.5
Sekino, T.6
Fujii, A.7
Ozaki, M.8
-
29
-
-
35348936121
-
Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix
-
D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors and Actuat. B: Chem. 127, 531 (2007).
-
(2007)
Sensors and Actuat. B: Chem.
, vol.127
, pp. 531
-
-
Du, D.1
Huang, X.2
Cai, J.3
Zhang, A.4
-
30
-
-
79551508317
-
Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite
-
A. Babaei, D. J. Garrett, and A. J. Downard, Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanal. 23, 417 (2011).
-
(2011)
Electroanal
, vol.23
, pp. 417
-
-
Babaei, A.1
Garrett, D.J.2
Downard, A.J.3
-
31
-
-
85065220388
-
Biocompatibility and alkaline phosphatase activity of phosphorylated chitooligosaccharides on the osteosarcoma mg63 cell line
-
J. Venkatesan, R. Pangestuti, Z.-J. Qian, B. Ryu, and S.-K. Kim, Biocompatibility and alkaline phosphatase activity of phosphorylated chitooligosaccharides on the osteosarcoma mg63 cell line. J. Funct. Biomater. 1, 3 (2010).
-
(2010)
J. Funct. Biomater.
, vol.1
, pp. 3
-
-
Venkatesan, J.1
Pangestuti, R.2
Qian, Z.-J.3
Ryu, B.4
Kim, S.-K.5
-
32
-
-
33847609287
-
Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via antiinflammatory effect
-
M. M. Kim, E. Mendis, N. Rajapakse, and S. K. Kim, Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via antiinflammatory effect. Bioorg. Med. Chem. Lett. 17, 1938 (2007).
-
(2007)
Bioorg. Med. Chem. Lett.
, vol.17
, pp. 1938
-
-
Kim, M.M.1
Mendis, E.2
Rajapakse, N.3
Kim, S.K.4
-
33
-
-
36248989188
-
Chitosan and its derivatives for tissue engineering applications
-
I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho, Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1 (2008).
-
(2008)
Biotechnol. Adv.
, vol.26
, pp. 1
-
-
Kim, I.-Y.1
Seo, S.-J.2
Moon, H.-S.3
Yoo, M.-K.4
Park, I.-Y.5
Kim, B.-C.6
Cho, C.-S.7
-
34
-
-
34547225594
-
Study on the functionalization of multi-walled carbon nanotube with monoamine terminated poly(ethylene oxide)
-
J. S. An, B.-U. Nam, S. H. Tan, and S. C. Hong, Study on the functionalization of multi-walled carbon nanotube with monoamine terminated poly(ethylene oxide). Macromol. Sy. 249-250, 276 (2007).
-
(2007)
Macromol. Sy.
, vol.249-250
, pp. 276
-
-
An, J.S.1
Nam, B.-U.2
Tan, S.H.3
Hong, S.C.4
-
35
-
-
0000129211
-
Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine
-
F. Pompeo and D. E. Resasco, Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2, 369 (2002).
-
(2002)
Nano Lett.
, vol.2
, pp. 369
-
-
Pompeo, F.1
Resasco, D.E.2
-
36
-
-
28744452599
-
Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent
-
M. Gravel, T. Gross, R. Vago, and M. Tabrizian, Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials 27, 1899 (2006).
-
(2006)
Biomaterials
, vol.27
, pp. 1899
-
-
Gravel, M.1
Gross, T.2
Vago, R.3
Tabrizian, M.4
-
37
-
-
79955827390
-
Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films
-
S. Y. Cho, Y. S. Yun, E. Kim, M. S. Kim, and H. J. Jin, Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films. J. Nanosci. Nanotechnol. 11, 801 (2011).
-
(2011)
J. Nanosci. Nanotechnol.
, vol.11
, pp. 801
-
-
Cho, S.Y.1
Yun, Y.S.2
Kim, E.3
Kim, M.S.4
Jin, H.J.5
-
38
-
-
79953007389
-
Carbon nanotubes as a scaffold for spermatogonial cell maintenance
-
T. Rafeeqi and G. Kaul, Carbon nanotubes as a scaffold for spermatogonial cell maintenance. J. Biomed. Nanotechnol. 6, 710 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 710
-
-
Rafeeqi, T.1
Kaul, G.2
-
39
-
-
79960983018
-
Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering
-
M. A. Shokrgozar, F. Mottaghitalab, V. Mottaghitalab, and M. Farokhi, Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J. Biomed. Nanotechnol. 7, 276 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 276
-
-
Shokrgozar, M.A.1
Mottaghitalab, F.2
Mottaghitalab, V.3
Farokhi, M.4
-
40
-
-
79957754740
-
Comparative analysis of mesothelial invasion by single-and multi-wall carbon nanotubes using computational approach
-
B. A. Akhoon, S. K. Gupta, and V. Verma, comparative analysis of mesothelial invasion by single-and multi-wall carbon nanotubes using computational approach. J. Biomed. Nanotechnol. 7, 181 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 181
-
-
Akhoon, B.A.1
Gupta, S.K.2
Verma, V.3
-
41
-
-
79955040849
-
SPION nanoparticles as an efficient probe and carrier of dna to umbilical cord blood-derived mesenchymal stem cells
-
Y. S. Kim, I. K. Park, W. J. Kim, M. K. Yu, S. Jon, S. H. Pun, M. H. Jeong, and Y. Ahn, SPION nanoparticles as an efficient probe and carrier of dna to umbilical cord blood-derived mesenchymal stem cells. J. Nanosci. Nanotechnol. 11, 1507 (2011).
-
(2011)
J. Nanosci. Nanotechnol.
, vol.11
, pp. 1507
-
-
Kim, Y.S.1
Park, I.K.2
Kim, W.J.3
Yu, M.K.4
Jon, S.5
Pun, S.H.6
Jeong, M.H.7
Ahn, Y.8
-
42
-
-
80052334686
-
The use of oligoperoxide-coated magnetic nanoparticles to label stem cells
-
D. Sponarova, D. Horak, M. Trchova, P. Jendelova, V. Herynek, N. Mitina, A. Zaichenko, R. Stoika, P. Lesny, and E. Sykova, The use of oligoperoxide-coated magnetic nanoparticles to label stem cells. J. Biomed. Nanotechnol. 7, 384 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 384
-
-
Sponarova, D.1
Horak, D.2
Trchova, M.3
Jendelova, P.4
Herynek, V.5
Mitina, N.6
Zaichenko, A.7
Stoika, R.8
Lesny, P.9
Sykova, E.10
-
43
-
-
79955860056
-
Magnetic field-magnetic nanoparticle culture system used to grow in vitro murine embryonic stem cells
-
E. R. L. de Freitas, P. R. O. Soares, S. de Paula, R. L. dos Santos, E. P. Porfirio, S. N. Bao, L. de Oliveira, E. Celma, and L. A. Guillo, Magnetic field-magnetic nanoparticle culture system used to grow in vitro murine embryonic stem cells. J. Nanosci. Nanotechnol. 11, 36 (2011).
-
(2011)
J. Nanosci. Nanotechnol.
, vol.11
, pp. 36
-
-
De Freitas, E.R.L.1
Soares, P.R.O.2
De Paula, S.3
Dos Santos, R.L.4
Porfirio, E.P.5
Bao, S.N.6
De Oliveira, L.7
Celma, E.8
Guillo, L.A.9
-
44
-
-
79957748373
-
Single wall carbon nanotubes block ion passage in mechano-sensitive ion channels by interacting with extracellular domain
-
A. Patel, S. Smita, Q. Rahman, S. K. Gupta, and M. K. Verma, Single wall carbon nanotubes block ion passage in mechano-sensitive ion channels by interacting with extracellular domain. J. Biomed. Nanotechnol. 7, 183 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 183
-
-
Patel, A.1
Smita, S.2
Rahman, Q.3
Gupta, S.K.4
Verma, M.K.5
-
45
-
-
79957705983
-
Toxicity evaluation of carbon nanotubes in normal human bronchial epithelial cells
-
S. Mittal, V. Sharma, N. Vallabani, S. Kulshrestha, A. Dhawan, and A. K. Pandey, Toxicity evaluation of carbon nanotubes in normal human bronchial epithelial cells. J. Biomed. Nanotechnol. 7, 108 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 108
-
-
Mittal, S.1
Sharma, V.2
Vallabani, N.3
Kulshrestha, S.4
Dhawan, A.5
Pandey, A.K.6
-
46
-
-
79952202354
-
Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells
-
Y. Xu, X. Chen, Y. Cheng, and Y. Xing, Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells. J. Biomed. Nanotechnol. 6, 260 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 260
-
-
Xu, Y.1
Chen, X.2
Cheng, Y.3
Xing, Y.4
-
47
-
-
0020563076
-
Comparative effects of chitosan and cholestyramine on lymphatic absorption of lipids in the rat
-
G. Vahouny, S. Satchithanandam, M. Cassidy, F. Lightfoot, and I. Furda, Comparative effects of chitosan and cholestyramine on lymphatic absorption of lipids in the rat. Am. J. Clin. Nutr. 38, 278 (1983).
-
(1983)
Am. J. Clin. Nutr.
, vol.38
, pp. 278
-
-
Vahouny, G.1
Satchithanandam, S.2
Cassidy, M.3
Lightfoot, F.4
Furda, I.5
-
48
-
-
80855147872
-
Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. uss
-
I. Vlasova, A. Sokolov, A. Chekanov, V. Kostevich, and V. Vasilyev, Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. uss. J. Bioorg. Chem. 37, 453 (2011).
-
(2011)
J. Bioorg. Chem.
, vol.37
, pp. 453
-
-
Vlasova, I.1
Sokolov, A.2
Chekanov, A.3
Kostevich, V.4
Vasilyev, V.5
-
49
-
-
79959400821
-
Peroxidase-induced degradation of single-walled carbon nanotubes: Hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes
-
I. I. Vlasova, T. V. Vakhrusheva, A. V. Sokolov, V. A. Kostevich, and A. A. Ragimov, Peroxidase-induced degradation of single-walled carbon nanotubes: Hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes. J. Phys. 291, 012056 (2011).
-
(2011)
J. Phys.
, vol.291
, pp. 012056
-
-
Vlasova, I.I.1
Vakhrusheva, T.V.2
Sokolov, A.V.3
Kostevich, V.A.4
Ragimov, A.A.5
-
50
-
-
37249035104
-
Single-walled carbon nanotube interactions with HeLa cells
-
H. Yehia, R. Draper, C. Mikoryak, E. Walker, P. Bajaj, I. Musselman, M. Daigrepont, G. Dieckmann, and P. Pantano, Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5, 8 (2007).
-
(2007)
J. Nanobiotechnol.
, vol.5
, pp. 8
-
-
Yehia, H.1
Draper, R.2
Mikoryak, C.3
Walker, E.4
Bajaj, P.5
Musselman, I.6
Daigrepont, M.7
Dieckmann, G.8
Pantano, P.9
-
51
-
-
33645324452
-
Chemical modification of SWNT alters in vitro cell-SWNT interactions
-
A. Nimmagadda, K. Thurston, M. U. Nollert, and P. S. McFetridge, Chemical modification of SWNT alters in vitro cell-SWNT interactions. J. Biomed. Mater. Res. A 76A, 614 (2006).
-
(2006)
J. Biomed. Mater. Res. A
, vol.76 A
, pp. 614
-
-
Nimmagadda, A.1
Thurston, K.2
Nollert, M.U.3
McFetridge, P.S.4
-
52
-
-
78649586734
-
Bone formation on carbon nanotube composite
-
M. Bhattacharya, P. Wutticharoenmongkol-Thitiwongsawet, D. T. Hamamoto, D. Lee, T. Cui, H. S. Prasad, and M. Ahmad, Bone formation on carbon nanotube composite. J. Biomed. Mater. Res. A 96A, 75 (2011).
-
(2011)
J. Biomed. Mater. Res. A
, vol.96 A
, pp. 75
-
-
Bhattacharya, M.1
Wutticharoenmongkol-Thitiwongsawet, P.2
Hamamoto, D.T.3
Lee, D.4
Cui, T.5
Prasad, H.S.6
Ahmad, M.7
|