메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages 676-685

Stimulation of minerals by carbon nanotube grafted glucosamine in mouse mesenchymal stem cells for bone tissue engineering

Author keywords

Bone tissue engineering; Chitooligosaccharide; Chitosan; Glucosamine; Mesenchymal stem cell; Single walled carbon nanotube

Indexed keywords

ALKALINE PHOSPHATASE ACTIVITY; ARTIFICIAL BONE MATERIALS; BONE TISSUE ENGINEERING; CHITOOLIGOSACCHARIDES; CYTOTOXIC EFFECTS; IN-VITRO; MESENCHYMAL STEM CELL; PHYSICOCHEMICAL CHARACTERISTICS;

EID: 84865115435     PISSN: 15507033     EISSN: 15507041     Source Type: Journal    
DOI: 10.1166/jbn.2012.1410     Document Type: Article
Times cited : (33)

References (52)
  • 2
    • 0027595948 scopus 로고
    • Tissue engineering
    • R. Langer and J. Vacanti, Tissue engineering. Science 260, 920 (1993).
    • (1993) Science , vol.260 , pp. 920
    • Langer, R.1    Vacanti, J.2
  • 4
    • 0342819025 scopus 로고
    • Helical microtubules of graphitic carbon
    • S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
    • (1991) Nature , vol.354 , pp. 56
    • Iijima, S.1
  • 5
    • 33749558615 scopus 로고    scopus 로고
    • Carbon nanotube applications for tissue engineering
    • B. S. Harrison and A. Atala, Carbon nanotube applications for tissue engineering. Biomaterials 28, 344 (2007).
    • (2007) Biomaterials , vol.28 , pp. 344
    • Harrison, B.S.1    Atala, A.2
  • 7
    • 0022345898 scopus 로고
    • The responses of cells to electrical fields: A review
    • K. R. Robinson, The responses of cells to electrical fields: A review. J. cell Biol. 101, 2023 (1985).
    • (1985) J. Cell Biol. , vol.101 , pp. 2023
    • Robinson, K.R.1
  • 8
    • 20744437307 scopus 로고    scopus 로고
    • A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes
    • B. Zhao, H. Hu, S. K. Mandal, and R. C. Haddon, A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17, 3235 (2005).
    • (2005) Chem. Mater. , vol.17 , pp. 3235
    • Zhao, B.1    Hu, H.2    Mandal, S.K.3    Haddon, R.C.4
  • 12
    • 70349319369 scopus 로고    scopus 로고
    • A review on biodegradable polymeric materials for bone tissue engineering applications
    • M. I. Sabir, X. Xu, and L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44, 5713 (2009).
    • (2009) J. Mater. Sci. , vol.44 , pp. 5713
    • Sabir, M.I.1    Xu, X.2    Li, L.3
  • 13
    • 78349309040 scopus 로고    scopus 로고
    • Preparation and characterization of carbon nanotube-grafted-chitosan - Natural hydroxyapatite composite for bone tissue engineering
    • J. Venkatesan, Z.-J. Qian, B. Ryu, N. Ashok Kumar, and S.-K. Kim, Preparation and characterization of carbon nanotube-grafted-chitosan - Natural hydroxyapatite composite for bone tissue engineering. Carbohyd. Polym. 83, 569 (2011).
    • (2011) Carbohyd. Polym. , vol.83 , pp. 569
    • Venkatesan, J.1    Qian, Z.-J.2    Ryu, B.3    Ashok Kumar, N.4    Kim, S.-K.5
  • 14
    • 0242573190 scopus 로고    scopus 로고
    • Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture
    • Q. Hu, B. Li, M. Wang, and J. Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials 25, 779 (2004).
    • (2004) Biomaterials , vol.25 , pp. 779
    • Hu, Q.1    Li, B.2    Wang, M.3    Shen, J.4
  • 15
    • 84655175086 scopus 로고    scopus 로고
    • Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering
    • R. Pallela, J. Venkatesan, V. R. Janapala, and S. K. Kim, Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. A 100A, 486 (2012).
    • (2012) J. Biomed. Mater. Res. A , vol.100 A , pp. 486
    • Pallela, R.1    Venkatesan, J.2    Janapala, V.R.3    Kim, S.K.4
  • 16
    • 20444409137 scopus 로고    scopus 로고
    • Chitosan: A versatile biopolymer for orthopaedic tissue-engineering
    • A. Di Martino, M. Sittinger, and M. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983 (2005).
    • (2005) Biomaterials , vol.26 , pp. 5983
    • Di Martino, A.1    Sittinger, M.2    Risbud, M.3
  • 17
    • 33847252081 scopus 로고    scopus 로고
    • Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan
    • G. Ke, W. Guan, C. Tang, W. Guan, D. Zeng, and F. Deng, Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 8, 322 (2007).
    • (2007) Biomacromolecules , vol.8 , pp. 322
    • Ke, G.1    Guan, W.2    Tang, C.3    Guan, W.4    Zeng, D.5    Deng, F.6
  • 18
    • 47349095459 scopus 로고    scopus 로고
    • Conductive macroporous composite chitosan-carbon nanotube scaffolds
    • C. Lau, M. J. Cooney, and P. Atanassov, Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24, 7004 (2008).
    • (2008) Langmuir , vol.24 , pp. 7004
    • Lau, C.1    Cooney, M.J.2    Atanassov, P.3
  • 19
    • 18544366611 scopus 로고    scopus 로고
    • Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application
    • X.-L. Luo, J.-J. Xu, J.-L. Wang, and H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169 (2005).
    • (2005) Chem. Commun. , vol.16 , pp. 2169
    • Luo, X.-L.1    Xu, J.-J.2    Wang, J.-L.3    Chen, H.-Y.4
  • 20
    • 34447542000 scopus 로고    scopus 로고
    • Manipulated dispersion of carbon nanotubes with derivatives of chitosan
    • J. Zhang, Q. Wang, L. Wang, and A. Wang, Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45, 1917 (2007).
    • (2007) Carbon , vol.45 , pp. 1917
    • Zhang, J.1    Wang, Q.2    Wang, L.3    Wang, A.4
  • 22
    • 28844479693 scopus 로고    scopus 로고
    • Preparation and mechanical properties of chitosan/carbon nanotubes composites
    • S.-F. Wang, L. Shen, W.-D. Zhang, and Y.-J. Tong, Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067 (2005).
    • (2005) Biomacromolecules , vol.6 , pp. 3067
    • Wang, S.-F.1    Shen, L.2    Zhang, W.-D.3    Tong, Y.-J.4
  • 25
    • 80052880249 scopus 로고    scopus 로고
    • The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process
    • N. Jamilpour, A. Fereidoon, and G. Rouhi, The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process. J. Biomed. Nanotechnol. 7, 542 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 542
    • Jamilpour, N.1    Fereidoon, A.2    Rouhi, G.3
  • 27
    • 4444313518 scopus 로고    scopus 로고
    • Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes
    • M. Zhang, A. Smith, and W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045 (2004).
    • (2004) Anal. Chem. , vol.76 , pp. 5045
    • Zhang, M.1    Smith, A.2    Gorski, W.3
  • 28
    • 34247331343 scopus 로고    scopus 로고
    • Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties
    • Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, and M. Ozaki, Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45, 1212 (2007).
    • (2007) Carbon , vol.45 , pp. 1212
    • Wu, Z.1    Feng, W.2    Feng, Y.3    Liu, Q.4    Xu, X.5    Sekino, T.6    Fujii, A.7    Ozaki, M.8
  • 29
    • 35348936121 scopus 로고    scopus 로고
    • Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix
    • D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors and Actuat. B: Chem. 127, 531 (2007).
    • (2007) Sensors and Actuat. B: Chem. , vol.127 , pp. 531
    • Du, D.1    Huang, X.2    Cai, J.3    Zhang, A.4
  • 30
    • 79551508317 scopus 로고    scopus 로고
    • Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite
    • A. Babaei, D. J. Garrett, and A. J. Downard, Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanal. 23, 417 (2011).
    • (2011) Electroanal , vol.23 , pp. 417
    • Babaei, A.1    Garrett, D.J.2    Downard, A.J.3
  • 31
    • 85065220388 scopus 로고    scopus 로고
    • Biocompatibility and alkaline phosphatase activity of phosphorylated chitooligosaccharides on the osteosarcoma mg63 cell line
    • J. Venkatesan, R. Pangestuti, Z.-J. Qian, B. Ryu, and S.-K. Kim, Biocompatibility and alkaline phosphatase activity of phosphorylated chitooligosaccharides on the osteosarcoma mg63 cell line. J. Funct. Biomater. 1, 3 (2010).
    • (2010) J. Funct. Biomater. , vol.1 , pp. 3
    • Venkatesan, J.1    Pangestuti, R.2    Qian, Z.-J.3    Ryu, B.4    Kim, S.-K.5
  • 32
    • 33847609287 scopus 로고    scopus 로고
    • Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via antiinflammatory effect
    • M. M. Kim, E. Mendis, N. Rajapakse, and S. K. Kim, Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via antiinflammatory effect. Bioorg. Med. Chem. Lett. 17, 1938 (2007).
    • (2007) Bioorg. Med. Chem. Lett. , vol.17 , pp. 1938
    • Kim, M.M.1    Mendis, E.2    Rajapakse, N.3    Kim, S.K.4
  • 34
    • 34547225594 scopus 로고    scopus 로고
    • Study on the functionalization of multi-walled carbon nanotube with monoamine terminated poly(ethylene oxide)
    • J. S. An, B.-U. Nam, S. H. Tan, and S. C. Hong, Study on the functionalization of multi-walled carbon nanotube with monoamine terminated poly(ethylene oxide). Macromol. Sy. 249-250, 276 (2007).
    • (2007) Macromol. Sy. , vol.249-250 , pp. 276
    • An, J.S.1    Nam, B.-U.2    Tan, S.H.3    Hong, S.C.4
  • 35
    • 0000129211 scopus 로고    scopus 로고
    • Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine
    • F. Pompeo and D. E. Resasco, Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2, 369 (2002).
    • (2002) Nano Lett. , vol.2 , pp. 369
    • Pompeo, F.1    Resasco, D.E.2
  • 36
    • 28744452599 scopus 로고    scopus 로고
    • Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent
    • M. Gravel, T. Gross, R. Vago, and M. Tabrizian, Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials 27, 1899 (2006).
    • (2006) Biomaterials , vol.27 , pp. 1899
    • Gravel, M.1    Gross, T.2    Vago, R.3    Tabrizian, M.4
  • 37
    • 79955827390 scopus 로고    scopus 로고
    • Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films
    • S. Y. Cho, Y. S. Yun, E. Kim, M. S. Kim, and H. J. Jin, Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films. J. Nanosci. Nanotechnol. 11, 801 (2011).
    • (2011) J. Nanosci. Nanotechnol. , vol.11 , pp. 801
    • Cho, S.Y.1    Yun, Y.S.2    Kim, E.3    Kim, M.S.4    Jin, H.J.5
  • 38
    • 79953007389 scopus 로고    scopus 로고
    • Carbon nanotubes as a scaffold for spermatogonial cell maintenance
    • T. Rafeeqi and G. Kaul, Carbon nanotubes as a scaffold for spermatogonial cell maintenance. J. Biomed. Nanotechnol. 6, 710 (2010).
    • (2010) J. Biomed. Nanotechnol. , vol.6 , pp. 710
    • Rafeeqi, T.1    Kaul, G.2
  • 39
    • 79960983018 scopus 로고    scopus 로고
    • Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering
    • M. A. Shokrgozar, F. Mottaghitalab, V. Mottaghitalab, and M. Farokhi, Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J. Biomed. Nanotechnol. 7, 276 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 276
    • Shokrgozar, M.A.1    Mottaghitalab, F.2    Mottaghitalab, V.3    Farokhi, M.4
  • 40
    • 79957754740 scopus 로고    scopus 로고
    • Comparative analysis of mesothelial invasion by single-and multi-wall carbon nanotubes using computational approach
    • B. A. Akhoon, S. K. Gupta, and V. Verma, comparative analysis of mesothelial invasion by single-and multi-wall carbon nanotubes using computational approach. J. Biomed. Nanotechnol. 7, 181 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 181
    • Akhoon, B.A.1    Gupta, S.K.2    Verma, V.3
  • 41
    • 79955040849 scopus 로고    scopus 로고
    • SPION nanoparticles as an efficient probe and carrier of dna to umbilical cord blood-derived mesenchymal stem cells
    • Y. S. Kim, I. K. Park, W. J. Kim, M. K. Yu, S. Jon, S. H. Pun, M. H. Jeong, and Y. Ahn, SPION nanoparticles as an efficient probe and carrier of dna to umbilical cord blood-derived mesenchymal stem cells. J. Nanosci. Nanotechnol. 11, 1507 (2011).
    • (2011) J. Nanosci. Nanotechnol. , vol.11 , pp. 1507
    • Kim, Y.S.1    Park, I.K.2    Kim, W.J.3    Yu, M.K.4    Jon, S.5    Pun, S.H.6    Jeong, M.H.7    Ahn, Y.8
  • 44
    • 79957748373 scopus 로고    scopus 로고
    • Single wall carbon nanotubes block ion passage in mechano-sensitive ion channels by interacting with extracellular domain
    • A. Patel, S. Smita, Q. Rahman, S. K. Gupta, and M. K. Verma, Single wall carbon nanotubes block ion passage in mechano-sensitive ion channels by interacting with extracellular domain. J. Biomed. Nanotechnol. 7, 183 (2011).
    • (2011) J. Biomed. Nanotechnol. , vol.7 , pp. 183
    • Patel, A.1    Smita, S.2    Rahman, Q.3    Gupta, S.K.4    Verma, M.K.5
  • 46
    • 79952202354 scopus 로고    scopus 로고
    • Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells
    • Y. Xu, X. Chen, Y. Cheng, and Y. Xing, Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells. J. Biomed. Nanotechnol. 6, 260 (2010).
    • (2010) J. Biomed. Nanotechnol. , vol.6 , pp. 260
    • Xu, Y.1    Chen, X.2    Cheng, Y.3    Xing, Y.4
  • 47
    • 0020563076 scopus 로고
    • Comparative effects of chitosan and cholestyramine on lymphatic absorption of lipids in the rat
    • G. Vahouny, S. Satchithanandam, M. Cassidy, F. Lightfoot, and I. Furda, Comparative effects of chitosan and cholestyramine on lymphatic absorption of lipids in the rat. Am. J. Clin. Nutr. 38, 278 (1983).
    • (1983) Am. J. Clin. Nutr. , vol.38 , pp. 278
    • Vahouny, G.1    Satchithanandam, S.2    Cassidy, M.3    Lightfoot, F.4    Furda, I.5
  • 48
    • 80855147872 scopus 로고    scopus 로고
    • Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. uss
    • I. Vlasova, A. Sokolov, A. Chekanov, V. Kostevich, and V. Vasilyev, Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. uss. J. Bioorg. Chem. 37, 453 (2011).
    • (2011) J. Bioorg. Chem. , vol.37 , pp. 453
    • Vlasova, I.1    Sokolov, A.2    Chekanov, A.3    Kostevich, V.4    Vasilyev, V.5
  • 49
    • 79959400821 scopus 로고    scopus 로고
    • Peroxidase-induced degradation of single-walled carbon nanotubes: Hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes
    • I. I. Vlasova, T. V. Vakhrusheva, A. V. Sokolov, V. A. Kostevich, and A. A. Ragimov, Peroxidase-induced degradation of single-walled carbon nanotubes: Hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes. J. Phys. 291, 012056 (2011).
    • (2011) J. Phys. , vol.291 , pp. 012056
    • Vlasova, I.I.1    Vakhrusheva, T.V.2    Sokolov, A.V.3    Kostevich, V.A.4    Ragimov, A.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.