메뉴 건너뛰기




Volumn 259, Issue 4, 2010, Pages 904-917

Nonexistence of multi-bubble solutions to some elliptic equations on convex domains

Author keywords

Blowing up solution; Critical Sobolev exponent; Liouville equation

Indexed keywords


EID: 77952955238     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1016/j.jfa.2010.03.008     Document Type: Article
Times cited : (61)

References (23)
  • 1
    • 0003007474 scopus 로고
    • On a variational problem with lack of compactness: The topological effect of the critical points at infinity
    • Bahri A., Li Y., Rey O. On a variational problem with lack of compactness: The topological effect of the critical points at infinity. Calc. Var. Partial Differential Equations 1995, 3:67-93.
    • (1995) Calc. Var. Partial Differential Equations , vol.3 , pp. 67-93
    • Bahri, A.1    Li, Y.2    Rey, O.3
  • 2
    • 0010784968 scopus 로고    scopus 로고
    • Construction of singular limits for a semilinear elliptic equation in dimension 2
    • Baraket S., Pacard F. Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differential Equations 1998, 6:1-38.
    • (1998) Calc. Var. Partial Differential Equations , vol.6 , pp. 1-38
    • Baraket, S.1    Pacard, F.2
  • 3
    • 77954784778 scopus 로고
    • Uniform estimates and blow-up behavior for solutions of -Δu=V(x)eu in two dimensions
    • Brezis H., Merle F. Uniform estimates and blow-up behavior for solutions of -Δu=V(x)eu in two dimensions. Comm. Partial Differential Equations 1991, 16:1223-1253.
    • (1991) Comm. Partial Differential Equations , vol.16 , pp. 1223-1253
    • Brezis, H.1    Merle, F.2
  • 4
    • 0001581738 scopus 로고
    • Asymptotics for elliptic equations involving critical growth
    • Birkhäuser Boston, Boston, MA, Partial Differential Equations and Calculus of Variations
    • Brezis H., Peletier L.A. Asymptotics for elliptic equations involving critical growth. Progr. Nonlinear Differential Equations Appl. 1989, vol. 1:149-192. Birkhäuser Boston, Boston, MA.
    • (1989) Progr. Nonlinear Differential Equations Appl. , vol.1 , pp. 149-192
    • Brezis, H.1    Peletier, L.A.2
  • 5
    • 0002373953 scopus 로고    scopus 로고
    • Stable solutions of semilinear elliptic problems in convex domains
    • Cabré X., Chanillo S. Stable solutions of semilinear elliptic problems in convex domains. Selecta Math. (N.S.) 1998, 4:1-10.
    • (1998) Selecta Math. (N.S.) , vol.4 , pp. 1-10
    • Cabré, X.1    Chanillo, S.2
  • 6
    • 84972581369 scopus 로고
    • Convexity of solutions of semilinear elliptic equations
    • Caffarelli L.A., Friedman A. Convexity of solutions of semilinear elliptic equations. Duke Math. J. 1985, 52(2):431-456.
    • (1985) Duke Math. J. , vol.52 , Issue.2 , pp. 431-456
    • Caffarelli, L.A.1    Friedman, A.2
  • 7
    • 0036071443 scopus 로고    scopus 로고
    • On the strict concavity of the harmonic radius in dimension N3
    • Cardaliaguet P., Tahraoui R. On the strict concavity of the harmonic radius in dimension N3. J. Math. Pures Appl. 2002, 81(9):223-240.
    • (2002) J. Math. Pures Appl. , vol.81 , Issue.9 , pp. 223-240
    • Cardaliaguet, P.1    Tahraoui, R.2
  • 8
    • 0038160131 scopus 로고    scopus 로고
    • Effect of the domain geometry on the existence of multipeak solutions for an elliptic problem
    • Dancer E.N., Yan S. Effect of the domain geometry on the existence of multipeak solutions for an elliptic problem. Topol. Meth. Nonlinear Anal. 1999, 14(1):1-38.
    • (1999) Topol. Meth. Nonlinear Anal. , vol.14 , Issue.1 , pp. 1-38
    • Dancer, E.N.1    Yan, S.2
  • 10
    • 13844308242 scopus 로고    scopus 로고
    • On the existence of blowing-up solutions for a mean field equation
    • Esposito P., Grossi M., Pistoia A. On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré 2005, 22:227-257.
    • (2005) Ann. Inst. H. Poincaré , vol.22 , pp. 227-257
    • Esposito, P.1    Grossi, M.2    Pistoia, A.3
  • 11
    • 33747419612 scopus 로고    scopus 로고
    • Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent
    • Esposito P., Musso M., Pistoia A. Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Differential Equations 2006, 227(1):29-68.
    • (2006) J. Differential Equations , vol.227 , Issue.1 , pp. 29-68
    • Esposito, P.1    Musso, M.2    Pistoia, A.3
  • 12
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • Gidas B., Ni W.M., Nirenberg L. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 1979, 68:209-243.
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 14
    • 58249088753 scopus 로고    scopus 로고
    • On the spectrum of a nonlinear planar problem
    • Gladiali F., Grossi M. On the spectrum of a nonlinear planar problem. Ann. Inst. H. Poincaré 2009, 26:191-222.
    • (2009) Ann. Inst. H. Poincaré , vol.26 , pp. 191-222
    • Gladiali, F.1    Grossi, M.2
  • 15
    • 0037294473 scopus 로고    scopus 로고
    • On the shape of the solutions of some semilinear elliptic problems
    • Grossi M., Molle R. On the shape of the solutions of some semilinear elliptic problems. Commun. Contemp. Math. 2003, 5:85-99.
    • (2003) Commun. Contemp. Math. , vol.5 , pp. 85-99
    • Grossi, M.1    Molle, R.2
  • 16
    • 0001675486 scopus 로고
    • Prescribing scalar curvature on Sn and related problems. I
    • Li Y.Y. Prescribing scalar curvature on Sn and related problems. I. J. Differential Equations 1995, 120:319-410.
    • (1995) J. Differential Equations , vol.120 , pp. 319-410
    • Li, Y.Y.1
  • 17
    • 0001759122 scopus 로고
    • Blow-up analysis for solutions of -Δu=Veu in dimension two
    • Li Y.Y., Shafrir I. Blow-up analysis for solutions of -Δu=Veu in dimension two. Indiana Univ. Math. J. 1994, 43:1255-1270.
    • (1994) Indiana Univ. Math. J. , vol.43 , pp. 1255-1270
    • Li, Y.Y.1    Shafrir, I.2
  • 18
    • 0040434832 scopus 로고    scopus 로고
    • Convergence for a Liouville equation
    • Ma L., Wei J. Convergence for a Liouville equation. Comment. Math. Helv. 2001, 76:506-514.
    • (2001) Comment. Math. Helv. , vol.76 , pp. 506-514
    • Ma, L.1    Wei, J.2
  • 19
    • 0036058814 scopus 로고    scopus 로고
    • Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent
    • Musso M., Pistoia A. Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 2002, 51(3):541-579.
    • (2002) Indiana Univ. Math. J. , vol.51 , Issue.3 , pp. 541-579
    • Musso, M.1    Pistoia, A.2
  • 20
    • 84974747888 scopus 로고
    • Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities
    • Nagasaki K., Suzuki T. Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities. Asymptot. Anal. 1990, 3:173-188.
    • (1990) Asymptot. Anal. , vol.3 , pp. 173-188
    • Nagasaki, K.1    Suzuki, T.2
  • 21
    • 77952957391 scopus 로고    scopus 로고
    • On the uniqueness of solutions for a semilinear elliptic problem in convex domains
    • Pistoia A. On the uniqueness of solutions for a semilinear elliptic problem in convex domains. Differential Integral Equations 2004, 17(11-12):1201-1212.
    • (2004) Differential Integral Equations , vol.17 , Issue.11-12 , pp. 1201-1212
    • Pistoia, A.1
  • 22
    • 84966253303 scopus 로고
    • On a two-dimensional elliptic problem with large exponent in nonlinearity
    • Ren X., Wei J. On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Amer. Math. Soc. 1994, 343(2):749-763.
    • (1994) Trans. Amer. Math. Soc. , vol.343 , Issue.2 , pp. 749-763
    • Ren, X.1    Wei, J.2
  • 23
    • 21844500023 scopus 로고    scopus 로고
    • Single-point condensation and least-energy solutions
    • Ren X., Wei J. Single-point condensation and least-energy solutions. Proc. Amer. Math. Soc. 1996, 124(1):111-120.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , Issue.1 , pp. 111-120
    • Ren, X.1    Wei, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.