메뉴 건너뛰기




Volumn 127, Issue , 2014, Pages 266-280

Agreement-based fuzzy C-means for clustering data with blocks of features

Author keywords

Collaborative clustering; Consensus based clustering; Euclidean distance; Fuzzy C means clustering; Particle swarm optimization

Indexed keywords

ALGORITHM OF FUZZY; COLLABORATIVE CLUSTERING; CONSENSUS-BASED CLUSTERING; EUCLIDEAN DISTANCE; EVALUATION CRITERIA; FUZZY C MEANS CLUSTERING; SPATIAL COORDINATES; SPATIO-TEMPORAL DATA;

EID: 84888431725     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.006     Document Type: Article
Times cited : (33)

References (30)
  • 1
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process, and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process, and its use in detecting compact well-separated clusters. Journal of Cybernetics 1973, 3(3):32-57.
    • (1973) Journal of Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 4
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • Keogh E., Chakrabarti K., Pazzani M., Mehrotra S. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems 2001, 3(3):263-286.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 5
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 2002, 3:583-617.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 8
    • 49749128817 scopus 로고    scopus 로고
    • Consensus based ensembles of soft clusterings
    • Punera K., Ghosh J. Consensus based ensembles of soft clusterings. Applied Artificial Intelligence 2008, 22(7):780-810.
    • (2008) Applied Artificial Intelligence , vol.22 , Issue.7 , pp. 780-810
    • Punera, K.1    Ghosh, J.2
  • 9
    • 77956058897 scopus 로고    scopus 로고
    • Fuzzy clustering with semantically distinct families of variables: descriptive and predictive aspects
    • Pedrycz W., Bargiela A. Fuzzy clustering with semantically distinct families of variables: descriptive and predictive aspects. Pattern Recognition Letters 2010, 31:1952-1958.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 1952-1958
    • Pedrycz, W.1    Bargiela, A.2
  • 16
    • 84864393938 scopus 로고    scopus 로고
    • Generation of a clustering ensemble based on a gravitational self-organising map
    • Ilc N., Dobnikar A. Generation of a clustering ensemble based on a gravitational self-organising map. Neurocomputing 2012, 96:47-56.
    • (2012) Neurocomputing , vol.96 , pp. 47-56
    • Ilc, N.1    Dobnikar, A.2
  • 17
  • 18
    • 75749158471 scopus 로고    scopus 로고
    • On voting-based consensus of cluster ensembles
    • Ayad H.G., Kamel M.S. On voting-based consensus of cluster ensembles. Pattern Recognition 2010, 43:1943-1953.
    • (2010) Pattern Recognition , vol.43 , pp. 1943-1953
    • Ayad, H.G.1    Kamel, M.S.2
  • 20
    • 77649238021 scopus 로고    scopus 로고
    • Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations
    • Wang F., Yang C., Lin Z., Li Y., Yuan Y. Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations. Neurocomputing 2010, 73:1457-1464.
    • (2010) Neurocomputing , vol.73 , pp. 1457-1464
    • Wang, F.1    Yang, C.2    Lin, Z.3    Li, Y.4    Yuan, Y.5
  • 21
    • 78649462741 scopus 로고    scopus 로고
    • Inducing multi-objective clustering ensembles with genetic programming
    • Coelho A.L.V., Fernandes E., Faceli K. Inducing multi-objective clustering ensembles with genetic programming. Neurocomputing 2010, 74:494-498.
    • (2010) Neurocomputing , vol.74 , pp. 494-498
    • Coelho, A.L.V.1    Fernandes, E.2    Faceli, K.3
  • 22
    • 37249013395 scopus 로고    scopus 로고
    • Semantic Web Content Analysis: a study in proximity-based collaborative clustering
    • Loia V., Pedrycz W., Senatore S. Semantic Web Content Analysis: a study in proximity-based collaborative clustering. IEEE Transactions on Fuzzy Systems 2007, 15(6):1294-1312.
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.6 , pp. 1294-1312
    • Loia, V.1    Pedrycz, W.2    Senatore, S.3
  • 23
    • 0036885192 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering
    • Pedrycz W. Collaborative fuzzy clustering. Pattern Recognition Letters 2002, 23:1675-1686.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1675-1686
    • Pedrycz, W.1
  • 24
    • 38749142896 scopus 로고    scopus 로고
    • Automatic kernel clustering with multi-elitist particle swarm optimization algorithm
    • Das S., Abraham A., Konar A. Automatic kernel clustering with multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters 2008, 29:688-699.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 688-699
    • Das, S.1    Abraham, A.2    Konar, A.3
  • 26
    • 84885576232 scopus 로고    scopus 로고
    • Clustering spatio-temporal data: an augmented fuzzy C-means
    • Izakian H., Pedrycz W., Jamal I. Clustering spatio-temporal data: an augmented fuzzy C-means. IEEE Transactions on Fuzzy Systems 2013, 25(5):855-868.
    • (2013) IEEE Transactions on Fuzzy Systems , vol.25 , Issue.5 , pp. 855-868
    • Izakian, H.1    Pedrycz, W.2    Jamal, I.3
  • 27
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c-means clustering based on feature-weight learning
    • Wang X., Wang Y., Wang L. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters 2004, 25:1123-1132.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3
  • 29
    • 46849094944 scopus 로고    scopus 로고
    • Collaborative clustering with the use of fuzzy C-means and its quantification
    • Pedrycz W., Raia P. Collaborative clustering with the use of fuzzy C-means and its quantification. Fuzzy Sets and Systems 2008, 159:2399-2427.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2399-2427
    • Pedrycz, W.1    Raia, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.