메뉴 건너뛰기




Volumn 25, Issue 3-4, 2014, Pages 557-572

Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm

Author keywords

Data driven prognostics; Fusion prognostics; Lithium ion battery; ND AR; RPF

Indexed keywords

CHARGING (BATTERIES); ELECTRIC BATTERIES; FORECASTING; IONS; LIFE CYCLE; LITHIUM; LITHIUM ALLOYS; LITHIUM COMPOUNDS; MONTE CARLO METHODS; NASA; NONLINEAR ANALYSIS; PROBABILITY DENSITY FUNCTION; PROBABILITY DISTRIBUTIONS; SECONDARY BATTERIES; SYSTEMS ENGINEERING; TIME SERIES;

EID: 84888361339     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1520-x     Document Type: Article
Times cited : (201)

References (29)
  • 1
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196(15): 6007-6014.
    • (2011) J Power Sources , vol.196 , Issue.15 , pp. 6007-6014
    • Zhang, J.1    Lee, J.2
  • 2
    • 80053570039 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method
    • He W, Williard N, Osterman M, Pecht M (2011) Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196: 10314-10321.
    • (2011) J Power Sources , vol.196 , pp. 10314-10321
    • He, W.1    Williard, N.2    Osterman, M.3    Pecht, M.4
  • 4
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • Saha B, Goebel K, Poll S, Christophersen J (2009) Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans Instrum Meas 58(2): 291-297.
    • (2009) IEEE Trans Instrum Meas , vol.58 , Issue.2 , pp. 291-297
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 5
    • 63449119191 scopus 로고    scopus 로고
    • A multi-step predictor with a variable input pattern for system state forecasting
    • Liu J, Wang W, Golnaraghi F (2009) A multi-step predictor with a variable input pattern for system state forecasting. Mech Syst Signal Process 23: 1586-1599.
    • (2009) Mech Syst Signal Process , vol.23 , pp. 1586-1599
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 6
    • 78649756320 scopus 로고    scopus 로고
    • A review: prognostics and health management
    • Peng Y, Liu D, Peng X (2010) A review: prognostics and health management. J Electron Meas Instrum 24(1): 1-8.
    • (2010) J Electron Meas Instrum , vol.24 , Issue.1 , pp. 1-8
    • Peng, Y.1    Liu, D.2    Peng, X.3
  • 7
    • 79955584653 scopus 로고    scopus 로고
    • Remaining useful life estimation: a review on the statistical data driven approaches
    • Si XS, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation: a review on the statistical data driven approaches. Eur J Oper Res 213(1): 1-14.
    • (2011) Eur J Oper Res , vol.213 , Issue.1 , pp. 1-14
    • Si, X.S.1    Wang, W.2    Hu, C.H.3    Zhou, D.H.4
  • 9
    • 76849109288 scopus 로고    scopus 로고
    • A prognostics and health management roadmap for information and electronics-rich systems
    • Pecht M, Jaai R (2010) A prognostics and health management roadmap for information and electronics-rich systems. Microelectron Reliab 50: 317-323.
    • (2010) Microelectron Reliab , vol.50 , pp. 317-323
    • Pecht, M.1    Jaai, R.2
  • 10
    • 67650712207 scopus 로고    scopus 로고
    • Comparison of prognostic algorithms for estimating remaining useful life of batteries
    • Saha B, Goebel K, Christophersen J (2009) Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans Inst Meas Control 31: 293-308.
    • (2009) Trans Inst Meas Control , vol.31 , pp. 293-308
    • Saha, B.1    Goebel, K.2    Christophersen, J.3
  • 11
    • 84872093306 scopus 로고    scopus 로고
    • Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
    • Olivares BE, Cerda Munoz MA, Orchard ME, Silva JF (2013) Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans Instrum Meas 62: 364-376.
    • (2013) IEEE Trans Instrum Meas , vol.62 , pp. 364-376
    • Olivares, B.E.1    Cerda Munoz, M.A.2    Orchard, M.E.3    Silva, J.F.4
  • 12
    • 84879114868 scopus 로고    scopus 로고
    • Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries
    • Orchard ME, Hevia-Koch P, Zhang B, Tang L (2013) Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Trans Ind Electron 60: 5260-5269.
    • (2013) IEEE Trans Ind Electron , vol.60 , pp. 5260-5269
    • Orchard, M.E.1    Hevia-Koch, P.2    Zhang, B.3    Tang, L.4
  • 13
    • 84879840208 scopus 로고    scopus 로고
    • Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression
    • Liu D, Pang J, Zhou J, Peng Y (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53: 832-839.
    • (2013) Microelectron Reliab , vol.53 , pp. 832-839
    • Liu, D.1    Pang, J.2    Zhou, J.3    Peng, Y.4
  • 15
    • 33645001792 scopus 로고    scopus 로고
    • Improving signal prediction performance of neural networks through multi-resolution learning approach
    • Liang Y, Liang X (2006) Improving signal prediction performance of neural networks through multi-resolution learning approach. IEEE Trans Syst Man Cybern B 36: 341-352.
    • (2006) IEEE Trans Syst Man Cybern B , vol.36 , pp. 341-352
    • Liang, Y.1    Liang, X.2
  • 16
    • 0032664638 scopus 로고    scopus 로고
    • Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
    • Alvin JS, Craig F, Pritpal S, Terrill A, David ER (1999) Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. J Power Sources 80(1-2): 293-300.
    • (1999) J Power Sources , vol.80 , Issue.1-2 , pp. 293-300
    • Alvin, J.S.1    Craig, F.2    Pritpal, S.3    Terrill, A.4    David, E.R.5
  • 17
    • 84879347106 scopus 로고    scopus 로고
    • Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
    • Big Sky, Montana
    • Kozlowski JD (2003) Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. In: IEEE aerospace conference, Big Sky, Montana.
    • (2003) IEEE aerospace conference
    • Kozlowski, J.D.1
  • 18
    • 84862795692 scopus 로고    scopus 로고
    • A data-model-fusion prognostic framework for dynamic system state forecasting
    • Liu J, Wang W, Ma F, Yang Y, Yang C (2012) A data-model-fusion prognostic framework for dynamic system state forecasting. Eng Appl Artif Intel 25: 814-823.
    • (2012) Eng Appl Artif Intel , vol.25 , pp. 814-823
    • Liu, J.1    Wang, W.2    Ma, F.3    Yang, Y.4    Yang, C.5
  • 19
    • 48049095242 scopus 로고    scopus 로고
    • An integrated approach to battery health monitoring using bayesian regression and state estimation
    • Baltimore, MD, USA
    • Saha B, Poll S, Goebel K (2007) An integrated approach to battery health monitoring using bayesian regression and state estimation. In: IEEE Autotestcon, Baltimore, MD, USA.
    • (2007) IEEE Autotestcon
    • Saha, B.1    Poll, S.2    Goebel, K.3
  • 20
    • 84879837145 scopus 로고    scopus 로고
    • An ensemble model for predicting the remaining useful performance of lithium-ion batteries
    • Xing Y, Ma EWM, Tsui KL, Pecht M (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53: 811-820.
    • (2013) Microelectron Reliab , vol.53 , pp. 811-820
    • Xing, Y.1    Ma, E.W.M.2    Tsui, K.L.3    Pecht, M.4
  • 22
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19: 716-723.
    • (1974) IEEE Trans Automat Contr , vol.19 , pp. 716-723
    • Akaike, H.1
  • 26
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam MS, Maskell S, Gordon N, Clapp T (2001) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50: 174-188.
    • (2001) IEEE Trans Signal Process , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 27
    • 84864218356 scopus 로고    scopus 로고
    • Battery data set
    • NASA Ames, Moffett Field, CA, USA
    • Saha B, Goebel K (2007) Battery data set, NASA Ames prognostics data repository, [http://ti. arc. nasa. gov/project/prognostic-data-repository], NASA Ames, Moffett Field, CA, USA.
    • (2007) NASA Ames prognostics data repository
    • Saha, B.1    Goebel, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.