메뉴 건너뛰기




Volumn 53, Issue 6, 2013, Pages 832-839

Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression

Author keywords

[No Author keywords available]

Indexed keywords

DATA-DRIVEN APPROACH; DATA-DRIVEN PROGNOSTICS; EVALUATION AND PREDICTIONS; FUNCTIONAL REGRESSION; GAUSSIAN PROCESS REGRESSION; LITHIUM-ION BATTERY; QUANTITATIVE COMPARISON; UNCERTAINTY REPRESENTATION;

EID: 84879840208     PISSN: 00262714     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.microrel.2013.03.010     Document Type: Article
Times cited : (417)

References (36)
  • 1
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • Z. Jingliang, and L. Jay A review on prognostics and health monitoring of Li-ion battery J Power Sources 196 15 2011 6007 6014
    • (2011) J Power Sources , vol.196 , Issue.15 , pp. 6007-6014
    • Jingliang, Z.1    Jay, L.2
  • 3
    • 21244441087 scopus 로고    scopus 로고
    • Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
    • B.S. Bhangu, P. Bentley, D.A. Stone, and C.M. Bingham Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles IEEE Trans Vehicular Technol 54 3 2011 783 794
    • (2011) IEEE Trans Vehicular Technol , vol.54 , Issue.3 , pp. 783-794
    • Bhangu, B.S.1    Bentley, P.2    Stone, D.A.3    Bingham, C.M.4
  • 4
    • 84879347106 scopus 로고    scopus 로고
    • Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
    • Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. In: Proceedings of IEEE aerospace conference; 2003. p. 3257-70.
    • (2003) Proceedings of IEEE Aerospace Conference , pp. 3257-3270
    • Kozlowski, J.D.1
  • 5
    • 67650712207 scopus 로고    scopus 로고
    • Comparison of prognostic algorithms for estimating remaining useful life of batteries
    • S. Bhaskar, G. Kai, and C. Jon Comparison of prognostic algorithms for estimating remaining useful life of batteries Trans Inst Measure Control 31 2009 293 308
    • (2009) Trans Inst Measure Control , vol.31 , pp. 293-308
    • Bhaskar, S.1    Kai, G.2    Jon, C.3
  • 7
    • 84866152291 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries using model-based and data-driven methods
    • (PHM-2012 Beijing)
    • Chaochao C, Michael P. Prognostics of lithium-ion batteries using model-based and data-driven methods. In: 2012 Prognostics & system health management conference. (PHM-2012 Beijing); 2012. p. 1-6.
    • (2012) 2012 Prognostics & System Health Management Conference , pp. 1-6
    • Chaochao, C.1    Michael, P.2
  • 12
    • 0032664638 scopus 로고    scopus 로고
    • Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
    • J.S. Alvin, F. Craig, S. Pritpal, A. Terrill, and E.R. David Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology J Power Sources 80 1-2 1999 293 300
    • (1999) J Power Sources , vol.80 , Issue.12 , pp. 293-300
    • Alvin, J.S.1    Craig, F.2    Pritpal, S.3    Terrill, A.4    David, E.R.5
  • 14
    • 48049095242 scopus 로고    scopus 로고
    • An integrated approach to battery health monitoring using Bayesian regression and state estimation
    • Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using Bayesian regression and state estimation. In: 2007 IEEE Autotestcon; 2007. p. 646-53.
    • (2007) 2007 IEEE Autotestcon , pp. 646-653
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 15
  • 18
    • 34548459917 scopus 로고    scopus 로고
    • Gaussian process functional regression modeling for batch data
    • J.Q. Shi, and B. Wang Gaussian process functional regression modeling for batch data Biometrics 63 2007 714 723
    • (2007) Biometrics , vol.63 , pp. 714-723
    • Shi, J.Q.1    Wang, B.2
  • 19
    • 84872093306 scopus 로고    scopus 로고
    • Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
    • B.E. Olivares, M.A. Cerda Munoz, M.E. Orchard, and J.F. Silva Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena IEEE T Instrum Meas 62 2013 364 376
    • (2013) IEEE T Instrum Meas , vol.62 , pp. 364-376
    • Olivares, B.E.1    Cerda Munoz, M.A.2    Orchard, M.E.3    Silva, J.F.4
  • 21
    • 72149104587 scopus 로고    scopus 로고
    • A new SOH prediction concept for the power lithium-ion battery used on HEVs
    • Dai HF, Wei XZ, Sun ZC. A new SOH prediction concept for the power lithium-ion battery used on HEVs. In: Vehicle power and propulsion conference; 2009. p. 1649-53.
    • (2009) Vehicle Power and Propulsion Conference , pp. 1649-1653
    • Dai, H.F.1    Wei, X.Z.2    Sun, Z.C.3
  • 22
    • 77951177896 scopus 로고    scopus 로고
    • A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
    • I.S. Kim A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer IEEE Trans Power Electron 25 2010 1013 1022
    • (2010) IEEE Trans Power Electron , vol.25 , pp. 1013-1022
    • Kim, I.S.1
  • 23
    • 79955575020 scopus 로고    scopus 로고
    • Intelligent prognostics for battery health monitoring based on sample entropy
    • A. Widodo, M.C. Shim, W. Caesarendra, and B.S. Yang Intelligent prognostics for battery health monitoring based on sample entropy Expert Syst Appl 38 2011 11763 11769
    • (2011) Expert Syst Appl , vol.38 , pp. 11763-11769
    • Widodo, A.1    Shim, M.C.2    Caesarendra, W.3    Yang, B.S.4
  • 24
    • 79955759645 scopus 로고    scopus 로고
    • Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices
    • M. Orchard, L. Tang, B. Saha, K. Goebel, and G. Vachtsevanos Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices Studies Inform Control 19 2010 209 218
    • (2010) Studies Inform Control , vol.19 , pp. 209-218
    • Orchard, M.1    Tang, L.2    Saha, B.3    Goebel, K.4    Vachtsevanos, G.5
  • 27
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • C. Tao, M. Julian, and M. Elaine Gaussian process regression for multivariate spectroscopic calibration Chem Intell Lab Syst 87 2007 59 71
    • (2007) Chem Intell Lab Syst , vol.87 , pp. 59-71
    • Tao, C.1    Julian, M.2    Elaine, M.3
  • 29
    • 84898940342 scopus 로고    scopus 로고
    • Transductive and Inductive methods for approximate gaussian process regression
    • MIT Press
    • Anton S, Volker T. Transductive and Inductive methods for approximate gaussian process regression. In: Advances in nerual information processing systems 15. MIT Press; 2003.
    • (2003) Advances in Nerual Information Processing Systems , vol.15
    • Anton, S.1    Volker, T.2
  • 30
    • 56749173398 scopus 로고    scopus 로고
    • Online sparse matrix gaussian process regression and vision applications
    • R. Ananth, and Y. Ming-Hsuan Online sparse matrix gaussian process regression and vision applications Lect Notes Comput Sci 5302 2008 468 482
    • (2008) Lect Notes Comput Sci , vol.5302 , pp. 468-482
    • Ananth, R.1    Ming-Hsuan, Y.2
  • 33
    • 77952791421 scopus 로고    scopus 로고
    • Distributed prognostic health management with gaussian process regression
    • Saha S, Saha B, Saxena A, Goebel K. Distributed prognostic health management with gaussian process regression, In: IEEE Aerospace conference; 2010. p. 1-8.
    • (2010) IEEE Aerospace Conference , pp. 1-8
    • Saha, S.1    Saha, B.2    Saxena, A.3    Goebel, K.4
  • 35
    • 49349095077 scopus 로고    scopus 로고
    • Uncertainty management for diagnostics and prognostics of batteries using Bayesian techniques
    • Saha B, Goebel K. Uncertainty management for diagnostics and prognostics of batteries using Bayesian techniques. In: Proceedings of the IEEE aerospace conference; 2008. p. 1-8.
    • (2008) Proceedings of the IEEE Aerospace Conference , pp. 1-8
    • Saha, B.1    Goebel, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.