메뉴 건너뛰기




Volumn 41, Issue 4 PART 2, 2014, Pages 1622-1631

Filter-based optimization techniques for selection of feature subsets in ensemble systems

Author keywords

Ant colony optimization; Ensemble systems; Feature selection; Genetic algorithms; Particle swarm optimization

Indexed keywords

EMPIRICAL ANALYSIS; ENSEMBLE SYSTEMS; EVALUATION CRITERIA; FEATURE SELECTION METHODS; INDIVIDUAL CLASSIFIERS; INDIVIDUAL COMPONENTS; OPTIMIZATION TECHNIQUES; SELECTION TECHNIQUES;

EID: 84888352153     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.08.059     Document Type: Article
Times cited : (46)

References (37)
  • 2
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • DOI 10.1016/j.patrec.2006.09.001, PII S0167865506002339
    • A.M.P. Canuto, M.C.C. Abreu, L.M. Oliveira, J.C. Xavier-Jr, and A.M. Santos Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles Pattern Recognition Letters 28 4 2007 472 486 (Pubitemid 44918135)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.M.P.1    Abreu, M.C.C.2    De Melo Oliveira, L.3    Xavier Jr., J.C.4    Santos, A.D.M.5
  • 3
    • 84861900093 scopus 로고    scopus 로고
    • Reinsel: A class-based mechanism for feature selection in ensemble of classifiers
    • A.M.P. Canuto, K.M.O. Vale, and A. Feitosa-Neto Reinsel: A class-based mechanism for feature selection in ensemble of classifiers Applied Soft Computing 12 8 2012 2517 2529
    • (2012) Applied Soft Computing , vol.12 , Issue.8 , pp. 2517-2529
    • Canuto, A.M.P.1    Vale, K.M.O.2    Feitosa-Neto, A.3
  • 5
    • 70349765925 scopus 로고    scopus 로고
    • Particle swarm for attribute selectionin Bayesian classification: An application to protein function prediction
    • E.S. Correa, A.A. Freitas, and C.G. Johnson Particle swarm for attribute selectionin Bayesian classification: An application to protein function prediction Journal of Artificial Evolution and Applications 2008 2008 1 12
    • (2008) Journal of Artificial Evolution and Applications , vol.2008 , pp. 1-12
    • Correa, E.S.1    Freitas, A.A.2    Johnson, C.G.3
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets The Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 11
    • 84888328879 scopus 로고    scopus 로고
    • FVC2004
    • FVC2004. .
  • 15
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimizationfor support vector machines
    • DOI 10.1016/j.eswa.2005.09.024, PII S0957417405002083
    • C. Huang, and C. Wang A GA-based feature selection and parameters optimization for support vector machines Expert Systems with Applications 31 2 2006 231 240 (Pubitemid 44294444)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 16
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • J. Hua, W.D. Tembe, and E.R. Dougherty Performance of feature-selection methods in the classification of high-dimension data Pattern Recognition 42 3 2009 409 424
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 17
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian network-based optimization
    • I. Inza, P. Larraaga, R. Etxeberria, and B. Sierra Feature subset selection by Bayesian network-based optimization Artificial Intelligence 123 1-2 2000 157 184
    • (2000) Artificial Intelligence , vol.123 , Issue.12 , pp. 157-184
    • Inza, I.1    Larraaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 18
    • 84931418085 scopus 로고    scopus 로고
    • Bi-Criterion optimization with multi colony ant algorithms
    • Evolutionary Multi-Criterion Optimization
    • S. Iredi, D. Merkle, and M. Middendorf Bi-criterion optimization with multi colony ant algorithms E. Zitzler, L. Thiele, K. Deb, C. Coello Coello, D. Corne, Evolutionary multi-criterion optimization LNCS Vol. 19 2001 Springer Berlin, Heidelberg 359 372 (Pubitemid 33241399)
    • (2001) Lecture notes in computer science , Issue.1993 , pp. 359-372
    • Iredi, S.1    Merkle, D.2    Middendorf, M.3
  • 21
    • 70350125882 scopus 로고    scopus 로고
    • An overview of text-independent speaker recognition: From features to supervectors
    • T. Kinnunen, and H. Li An overview of text-independent speaker recognition: From features to supervectors Speech Communication 52 1 2010 12 40
    • (2010) Speech Communication , vol.52 , Issue.1 , pp. 12-40
    • Kinnunen, T.1    Li, H.2
  • 24
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 27
    • 79551523991 scopus 로고    scopus 로고
    • Greedy optimization classifiers ensemble based on diversity
    • S. Mao, L. Jiao, L. Xiong, and S. Gou Greedy optimization classifiers ensemble based on diversity Pattern Recognition 44 6 2011 1245 1261
    • (2011) Pattern Recognition , vol.44 , Issue.6 , pp. 1245-1261
    • Mao, S.1    Jiao, L.2    Xiong, L.3    Gou, S.4
  • 28
    • 84865090987 scopus 로고    scopus 로고
    • A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function
    • Nascimento, D., & Canuto, A. M. P. (2012). A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function. In IEEE international joint conference on neural networks (IJCNN) (pp. 2694-2701).
    • (2012) IEEE International Joint Conference on Neural Networks (IJCNN) , pp. 2694-2701
    • Nascimento, D.1    Canuto, A.M.P.2
  • 30
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • American Association for Artificial Intelligence
    • D.W. Opitz Feature selection for ensembles Conference on artificial intelligence, AAAI 1999 American Association for Artificial Intelligence 379 384
    • (1999) Conference on Artificial Intelligence, AAAI , pp. 379-384
    • Opitz, D.W.1
  • 31
    • 41149138911 scopus 로고    scopus 로고
    • The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification
    • K.R. Robbins, W. Zhang, J.K. Bertrand, and R. Rekaya The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification Journal of Mathematical Medicine and Biology 24 4 2007 413 426
    • (2007) Journal of Mathematical Medicine and Biology , vol.24 , Issue.4 , pp. 413-426
    • Robbins, K.R.1    Zhang, W.2    Bertrand, J.K.3    Rekaya, R.4
  • 33
    • 79959409880 scopus 로고    scopus 로고
    • A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers
    • Santana, L. E. A., Silva, L., Canuto, A. M. P., Pintro, F., & Vale, K. O. (2010). A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers. In IEEE congress on evolutionary computation (pp. 1-8).
    • (2010) IEEE Congress on Evolutionary Computation , pp. 1-8
    • Santana, L.E.A.1    Silva, L.2    Canuto, A.M.P.3    Pintro, F.4    Vale, K.O.5
  • 35
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • W. Siedlecki, and J. Sklansky A note on genetic algorithms for large-scale feature selection Pattern Recognition Letters 10 5 1989 335 347
    • (1989) Pattern Recognition Letters , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.