메뉴 건너뛰기




Volumn 139, Issue 672, 2013, Pages 820-840

An exploration of the equivalent weights particle filter

Author keywords

Data assimilation; Particle filtering; Proposal densities

Indexed keywords

PROBABILITY DENSITY FUNCTION; PROBABILITY DISTRIBUTIONS;

EID: 84888157885     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.1995     Document Type: Article
Times cited : (77)

References (25)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustmant filter for data assimilation
    • Anderson JL. 2001. An ensemble adjustmant filter for data assimilation. Mon. Weather Rev. 129: 2884-2903.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the Ensemble Transform Kalman Filter Part I: Theoretical aspects
    • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420-436.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 3
    • 77955429089 scopus 로고    scopus 로고
    • Beyond Gaussian statistical modeling in geophysical data assimilation
    • Bocquet M, Pires CA,Wu L. 2010. Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Weather Rev. 138: 2997-3023.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 2997-3023
    • Bocquet, M.1    Pires, C.A.2    Wu, L.3
  • 4
    • 77955575343 scopus 로고    scopus 로고
    • Intercomparison of variational data assimilation and the Ensemble Kalman Filter for global deterministic NWP Part 1:Description and single-observation experiments
    • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B. 2010. Intercomparison of variational data assimilation and the Ensemble Kalman Filter for global deterministic NWP. Part 1: Description and single-observation experiments. Mon. Weather Rev. 138: 1550-1566.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 1550-1566
    • Buehner, M.1    Houtekamer, P.L.2    Charette, C.3    Mitchell, H.L.4    He, B.5
  • 6
    • 70350453771 scopus 로고    scopus 로고
    • Implicit sampling for particle filters
    • Chorin AJ, Tu X. 2009. Implicit sampling for particle filters. Proc. National Acad. Sci. USA 106: 17249-17254.
    • (2009) Proc. National Acad. Sci. USA , vol.106 , pp. 17249-17254
    • Chorin, A.J.1    Tu, X.2
  • 8
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo samplingmethods for Bayesian filtering
    • Doucet A, Godsill S, Andrieu C. 2000. On sequential Monte Carlo samplingmethods for Bayesian filtering. Statist.Comput. 10: 197-208.
    • (2000) Statist.Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 10
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 11
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon NJ, Salmond DJ, Smith AF. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140: 107-113.
    • (1993) IEE Proc. F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.3
  • 12
    • 0035270069 scopus 로고    scopus 로고
    • Interpretation of rank histograms for verifying ensemble forecasts
    • Hamill TM. 2000. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weather Rev. 129: 550-560.
    • (2000) Mon. Weather Rev. , vol.129 , pp. 550-560
    • Hamill, T.M.1
  • 14
    • 84865284872 scopus 로고
    • Gamma function derivation of n-sphere volumes
    • Huber G. 1982. Gamma function derivation of n-sphere volumes. Amer. Math. Mon. 89: 301-302.
    • (1982) Amer. Math. Mon. , vol.89 , pp. 301-302
    • Huber, G.1
  • 15
    • 84897963122 scopus 로고    scopus 로고
    • Monte-Carlo filter and smoother for non-Gaussian nonlinear state-spacemodels
    • Kitagawa G. 1996. Monte-Carlo filter and smoother for non-Gaussian nonlinear state-spacemodels. J. Comput. Graph. Statist. 10: 253-259.
    • (1996) J. Comput. Graph. Statist. , vol.10 , pp. 253-259
    • Kitagawa, G.1
  • 16
    • 0000241853 scopus 로고
    • Deterministic non-periodic flow
    • Lorenz EN. 1963. Deterministic non-periodic flow. J. Atmos. Sci. 20: 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 17
    • 0001846226 scopus 로고
    • Predictability: A problem partly solved
    • ECMWF: Reading, UK
    • Lorenz EN. 1995. Predictability: A problem partly solved. In Seminar on Predictability, Vol. I. ECMWF: Reading, UK. 1-18. Available at http://www.ecmwf.int/publications/library/do/references/show?id=87423
    • (1995) Seminar on Predictability , vol.1 , pp. 1-18
    • Lorenz, E.N.1
  • 18
    • 74949129408 scopus 로고    scopus 로고
    • Sequential Monte-Carlo methods for dynamical systems
    • Lui JS, Chen R. 1998. Sequential Monte-Carlo methods for dynamical systems. J. Amer. Statist. Assoc. 90: 567-576.
    • (1998) J. Amer. Statist. Assoc. , vol.90 , pp. 567-576
    • Lui, J.S.1    Chen, R.2
  • 19
  • 21
    • 0023128058 scopus 로고
    • Variational assimilation ofmeteorological observations with the adjoint voriticity equation I. Theory
    • Talagrand O, Courtier P. 1987. Variational assimilation ofmeteorological observations with the adjoint voriticity equation. I. Theory. Q. J. R. Meteorol. Soc. 113: 1311-1328.
    • (1987) Q. J. R. Meteorol. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 22
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • Van Leeuwen PJ. 2009. Particle filtering in geophysical systems. Mon. Weather Rev. 137: 4089-4114.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 23
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in geosciences: an extremely efficient particle filter
    • Van Leeuwen PJ. 2010. Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q. J. R. Meteorol. Soc. 136: 1991-1999.
    • (2010) Q. J. R. Meteorol. Soc. , vol.136 , pp. 1991-1999
    • Van Leeuwen, P.J.1
  • 24
    • 79954884855 scopus 로고    scopus 로고
    • Efficient nonlinear data assimilation in geophysical fluid dynamics
    • Van Leeuwen PJ. 2011. Efficient nonlinear data assimilation in geophysical fluid dynamics. Comput. Fluids 46: 52-58.
    • (2011) Comput. Fluids , vol.46 , pp. 52-58
    • Van Leeuwen, P.J.1
  • 25
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker JS, Hamill TH. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130: 1913-1923.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 1913-1923
    • Whitaker, J.S.1    Hamill, T.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.