메뉴 건너뛰기




Volumn 36, Issue 2, 2013, Pages 642-650

Bayesian two-step Lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints

Author keywords

Adaptive Lasso; Clinical trials; Group Lasso; Proportional hazards model; Targeted therapy design; Variable selection

Indexed keywords

BIOLOGICAL MARKER;

EID: 84888134117     PISSN: 15517144     EISSN: 15592030     Source Type: Journal    
DOI: 10.1016/j.cct.2013.09.009     Document Type: Article
Times cited : (35)

References (17)
  • 1
    • 0025813195 scopus 로고
    • A Monte Carlo method for Bayesian inference in frailty models
    • Clayton D. A Monte Carlo method for Bayesian inference in frailty models. Biometrics 1991, 47:467-485.
    • (1991) Biometrics , vol.47 , pp. 467-485
    • Clayton, D.1
  • 2
    • 0030532505 scopus 로고    scopus 로고
    • Bayesian variable selection with related predictors
    • Chipman H. Bayesian variable selection with related predictors. Can J Stat 1996, 24:17-36.
    • (1996) Can J Stat , vol.24 , pp. 17-36
    • Chipman, H.1
  • 3
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox D.R. Regression models and life tables (with discussion). J R Stat Soc Ser B 1972, 34:187-200.
    • (1972) J R Stat Soc Ser B , vol.34 , pp. 187-200
    • Cox, D.R.1
  • 5
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • Fan J., Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B 2008, 70:849-911.
    • (2008) J R Stat Soc Ser B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 8
    • 84859858172 scopus 로고    scopus 로고
    • Bayesian hyper-Lassos with non-convex penalization
    • Griffin J.E., Brown P. Bayesian hyper-Lassos with non-convex penalization. Aust N Z J Stat 2011, 53:423-442.
    • (2011) Aust N Z J Stat , vol.53 , pp. 423-442
    • Griffin, J.E.1    Brown, P.2
  • 9
    • 0001509344 scopus 로고
    • Nonparametric Bayesian analysis of survival time data
    • Kalbfleisch J.D. Nonparametric Bayesian analysis of survival time data. J R Stat Soc Ser B 1978, 40:214-221.
    • (1978) J R Stat Soc Ser B , vol.40 , pp. 214-221
    • Kalbfleisch, J.D.1
  • 11
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian Lassos
    • Kyung M., Gill J., Ghosh M., Casella G. Penalized regression, standard errors, and Bayesian Lassos. Bayesian Anal 2010, 5:369-412.
    • (2010) Bayesian Anal , vol.5 , pp. 369-412
    • Kyung, M.1    Gill, J.2    Ghosh, M.3    Casella, G.4
  • 13
  • 14
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 1996, 58:267-288.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 15
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 2006, 68:49-67.
    • (2006) J R Stat Soc Ser B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 16
    • 52649154223 scopus 로고    scopus 로고
    • Bayesian adaptive design for targeted therapy development in lung cancer - a step toward personalized medicine
    • Zhou X., Liu S., Kim E., Herbst R.S., Lee J. Bayesian adaptive design for targeted therapy development in lung cancer - a step toward personalized medicine. Clin Trials 2008, 5:181-193.
    • (2008) Clin Trials , vol.5 , pp. 181-193
    • Zhou, X.1    Liu, S.2    Kim, E.3    Herbst, R.S.4    Lee, J.5
  • 17
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou H. The adaptive Lasso and its oracle properties. J Am Stat Assoc 2006, 101:1418-1429.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.