메뉴 건너뛰기




Volumn 110, Issue 47, 2013, Pages 18844-18849

Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12

Author keywords

[No Author keywords available]

Indexed keywords

ATG12 PROTEIN; ATG3 PROTEIN; PROTEIN; UNCLASSIFIED DRUG;

EID: 84888096050     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1314755110     Document Type: Article
Times cited : (79)

References (27)
  • 1
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M (2011) Autophagy: Renovation of cells and tissues. Cell 147(4-728-741
    • (2011) Cell , vol.147 , Issue.4 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 2
    • 84878562770 scopus 로고    scopus 로고
    • Autophagic processes in yeast: Mechanism, machinery and regulation
    • Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics 194(2-341-361
    • (2013) Genetics , vol.194 , Issue.2 , pp. 341-361
    • Reggiori, F.1    Klionsky, D.J.2
  • 4
    • 33745088813 scopus 로고    scopus 로고
    • Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy
    • Hanada T, Ohsumi Y (2005) Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy 1(2-110-118
    • (2005) Autophagy , vol.1 , Issue.2 , pp. 110-118
    • Hanada, T.1    Ohsumi, Y.2
  • 5
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, et al. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33-24131-24145
    • (2007) J Biol Chem , vol.282 , Issue.33 , pp. 24131-24145
    • Pankiv, S.1
  • 6
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, et al. (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52-37298-37302
    • (2007) J Biol Chem , vol.282 , Issue.52 , pp. 37298-37302
    • Hanada, T.1
  • 7
    • 43949143804 scopus 로고    scopus 로고
    • The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita N, et al. (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5-2092-2100
    • (2008) Mol Biol Cell , vol.19 , Issue.5 , pp. 2092-2100
    • Fujita, N.1
  • 8
    • 84872036691 scopus 로고    scopus 로고
    • Structure of the human ATG12∼ ATG5 conjugate required for LC3 lipidation in autophagy
    • Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12∼ ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20(1-59-66
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.1 , pp. 59-66
    • Otomo, C.1    Metlagel, Z.2    Takaesu, G.3    Otomo, T.4
  • 9
    • 34247237202 scopus 로고    scopus 로고
    • The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation
    • Yamada Y, et al. (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282(11- 8036-8043
    • (2007) J Biol Chem , vol.282 , Issue.11 , pp. 8036-8043
    • Yamada, Y.1
  • 10
    • 84870815734 scopus 로고    scopus 로고
    • Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures
    • Kaiser SE, et al. (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19(12-1242-1249
    • (2012) Nat Struct Mol Biol , vol.19 , Issue.12 , pp. 1242-1249
    • Kaiser, S.E.1
  • 11
    • 84870834728 scopus 로고    scopus 로고
    • Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7
    • Yamaguchi M, et al. (2012) Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol 19(12-1250-1256
    • (2012) Nat Struct Mol Biol , vol.19 , Issue.12 , pp. 1250-1256
    • Yamaguchi, M.1
  • 12
    • 80555144181 scopus 로고    scopus 로고
    • Structural basis of Atg8 activation by a homodimeric E1
    • Noda NN, et al. (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 44(3-462-475
    • (2011) Atg7. Mol Cell , vol.44 , Issue.3 , pp. 462-475
    • Noda, N.N.1
  • 13
    • 80555144189 scopus 로고    scopus 로고
    • Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway
    • Taherbhoy AM, et al. (2011) Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell 44(3-451-461
    • (2011) Mol Cell , vol.44 , Issue.3 , pp. 451-461
    • Taherbhoy, A.M.1
  • 14
    • 53049103308 scopus 로고    scopus 로고
    • Structural basis for sorting mechanism of p62 in selective autophagy
    • Ichimura Y, et al. (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283(33-22847-22857
    • (2008) J Biol Chem , vol.283 , Issue.33 , pp. 22847-22857
    • Ichimura, Y.1
  • 15
    • 77950484269 scopus 로고    scopus 로고
    • Atg8-family interacting motif crucial for selective autophagy
    • Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584(7-1379-1385
    • (2010) FEBS Lett , vol.584 , Issue.7 , pp. 1379-1385
    • Noda, N.N.1    Ohsumi, Y.2    Inagaki, F.3
  • 16
    • 57249083972 scopus 로고    scopus 로고
    • Structural basis of target recognition by Atg8/LC3 during selective autophagy
    • Noda NN, et al. (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13(12-1211-1218
    • (2008) Genes Cells , vol.13 , Issue.12 , pp. 1211-1218
    • Noda, N.N.1
  • 17
    • 84873405258 scopus 로고    scopus 로고
    • Structure of the Atg12- Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation
    • Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F (2013) Structure of the Atg12- Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep 14(2-206-211
    • (2013) EMBO Rep , vol.14 , Issue.2 , pp. 206-211
    • Noda, N.N.1    Fujioka, Y.2    Hanada, T.3    Ohsumi, Y.4    Inagaki, F.5
  • 18
    • 33646064427 scopus 로고    scopus 로고
    • Structural complexity in ubiquitin recognition
    • Harper JW, Schulman BA (2006) Structural complexity in ubiquitin recognition. Cell 124(6-1133-1136
    • (2006) Cell , vol.124 , Issue.6 , pp. 1133-1136
    • Harper, J.W.1    Schulman, B.A.2
  • 19
    • 0029400480 scopus 로고
    • NMRPipe: A multidimensional spectral processing system based on UNIX pipes
    • Delaglio F, et al. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3-277-293
    • (1995) J Biomol NMR , vol.6 , Issue.3 , pp. 277-293
    • Delaglio, F.1
  • 20
    • 34249765651 scopus 로고
    • NMR View: A computer program for the visualization and analysis of NMR data
    • Johnson BA, Blevins RA (1994) NMR View: A computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5-603-614
    • (1994) J Biomol NMR , vol.4 , Issue.5 , pp. 603-614
    • Johnson, B.A.1    Blevins, R.A.2
  • 21
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307-326
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 22
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams PD, et al. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2- 213-221
    • (2010) Acta Crystallogr D Biol Crystallogr , vol.66 , Issue.PART. 2 , pp. 213-221
    • Adams, P.D.1
  • 23
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1-2126-2132
    • (2004) Acta Crystallogr D Biol Crystallogr , vol.60 , Issue.PART. 12 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 24
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen VB, et al. (2010) MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1-12-21
    • (2010) Acta Crystallogr D Biol Crystallogr , vol.66 , Issue.PART. 1 , pp. 12-21
    • Chen, V.B.1
  • 25
    • 0035964342 scopus 로고    scopus 로고
    • Electrostatics of nanosystems: Application to microtubules and the ribosome
    • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18- 10037-10041
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.18 , pp. 10037-10041
    • Baker, N.A.1    Sept, D.2    Joseph, S.3    Holst, M.J.4    McCammon, J.A.5
  • 26
    • 0142227052 scopus 로고    scopus 로고
    • Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics
    • Kitamura T, et al. (2003) Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics. Exp Hematol 31(11-1007-1014
    • (2003) Exp Hematol , vol.31 , Issue.11 , pp. 1007-1014
    • Kitamura, T.1
  • 27
    • 80054078476 scopus 로고    scopus 로고
    • Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
    • Sievers F, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.
    • (2011) Mol Syst Biol , vol.7 , pp. 539
    • Sievers, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.