-
1
-
-
79951933087
-
Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics
-
Arias JL, Reddy LH, Othman M, Gillet B, Desmaële D, Zouhiri F, et al. Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011;5:1513-21.
-
(2011)
ACS Nano
, vol.5
, pp. 1513-1521
-
-
Arias, J.L.1
Reddy, L.H.2
Othman, M.3
Gillet, B.4
Desmaële, D.5
Zouhiri, F.6
-
2
-
-
33646735236
-
Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery
-
DOI 10.1002/smll.200600009
-
Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006;2: 785-92. (Pubitemid 43745151)
-
(2006)
Small
, vol.2
, Issue.6
, pp. 785-792
-
-
Kohler, N.1
Sun, C.2
Fichtenholtz, A.3
Gunn, J.4
Fang, C.5
Zhang, M.6
-
3
-
-
84861123819
-
Biological applications of magnetic nanoparticles
-
Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012;41:4306-34.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 4306-4334
-
-
Colombo, M.1
Carregal-Romero, S.2
Casula, M.F.3
Gutiérrez, L.4
Morales, M.P.5
Böhm, I.B.6
-
4
-
-
0033154142
-
Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles
-
Jordan A, Scholz R, Wust P, Fa H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999;201:413-19.
-
(1999)
J Magn Magn Mater
, vol.201
, pp. 413-419
-
-
Jordan, A.1
Scholz, R.2
Wust, P.3
Fa, H.4
Felix, R.5
-
6
-
-
26444526995
-
Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer
-
Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clinical Cancer Research 2005;11:S7093-103.
-
(2005)
Clinical Cancer Research
, vol.11
-
-
Ivkov, R.1
Denardo, S.J.2
Daum, W.3
Foreman, A.R.4
Goldstein, R.C.5
Nemkov, V.S.6
-
7
-
-
79959846524
-
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
-
Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317-24.
-
(2011)
J Neurooncol
, vol.103
, pp. 317-324
-
-
Maier-Hauff, K.1
Ulrich, F.2
Nestler, D.3
Niehoff, H.4
Wust, P.5
Thiesen, B.6
-
8
-
-
54449098985
-
Clinical applications of magnetic nanoparticles for hyperthermia
-
Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 2008;24: 467-74.
-
(2008)
Int J Hyperthermia
, vol.24
, pp. 467-474
-
-
Thiesen, B.1
Jordan, A.2
-
9
-
-
77953853621
-
Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy
-
Krishnan KM. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 2010;46:2523-58.
-
(2010)
IEEE Trans Magn
, vol.46
, pp. 2523-2558
-
-
Krishnan, K.M.1
-
11
-
-
84866656031
-
Iron oxide-based nanostructures for MRI and magnetic hyperthermia
-
Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 2012;7:1443-59.
-
(2012)
Nanomedicine
, vol.7
, pp. 1443-1459
-
-
Hilger, I.1
Kaiser, W.A.2
-
12
-
-
79955046623
-
The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method
-
Golneshan AA, Lahonian M. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperther 2011;27:266-74.
-
(2011)
Int J Hyperther
, vol.27
, pp. 266-274
-
-
Golneshan, A.A.1
Lahonian, M.2
-
13
-
-
79960405027
-
Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia
-
Attaluri A, Ma R, Qiu Y, Li W, Zhu L. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. Int J Hyperthermia 2011;27: 491-502.
-
(2011)
Int J Hyperthermia
, vol.27
, pp. 491-502
-
-
Attaluri, A.1
Ma, R.2
Qiu, Y.3
Li, W.4
Zhu, L.5
-
14
-
-
84861511870
-
Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination
-
Owen J, Pankhurst Q, Stride E. Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination. Int J Hyperthermia 2012;28:362-73.
-
(2012)
Int J Hyperthermia
, vol.28
, pp. 362-373
-
-
Owen, J.1
Pankhurst, Q.2
Stride, E.3
-
15
-
-
80051952287
-
Effects of magnetic induction hyperthermia and radiotherapy alone or combined on a murine 4T1 metastatic breast cancer model
-
Wang H, Li X, Xi X, Hu B, Zhao L, Liao Y, et al. Effects of magnetic induction hyperthermia and radiotherapy alone or combined on a murine 4T1 metastatic breast cancer model. Int J Hyperthermia 2011;27:563-72.
-
(2011)
Int J Hyperthermia
, vol.27
, pp. 563-572
-
-
Wang, H.1
Li, X.2
Xi, X.3
Hu, B.4
Zhao, L.5
Liao, Y.6
-
16
-
-
84876273400
-
On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles
-
Lee J-H, Chen K-J, Noh S-H, Garcia MA, Wang H, Lin W-Y, et al. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Ang Chem Int Ed 2013;52:4384-88.
-
(2013)
Ang Chem Int Ed
, vol.52
, pp. 4384-4388
-
-
Lee, J.-H.1
Chen, K.-J.2
Noh, S.-H.3
Garcia, M.A.4
Wang, H.5
Lin, W.-Y.6
-
17
-
-
84869166858
-
Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
-
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012;112: 5818-78.
-
(2012)
Chem Rev
, vol.112
, pp. 5818-5878
-
-
Reddy, L.H.1
Arias, J.L.2
Nicolas, J.3
Couvreur, P.4
-
18
-
-
77949903841
-
Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia
-
Hergt R, Dutz S, Zeisberger M. Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 2010;21:015706.
-
(2010)
Nanotechnology
, vol.21
, pp. 015706
-
-
Hergt, R.1
Dutz, S.2
Zeisberger, M.3
-
20
-
-
84875979099
-
Colloidal ordered assemblies in a polymer shell-A novel type of magnetic nanobeads for theranostic applications
-
Bigall NC, Wilhelm C, Beoutis M-L, Garcia-Hernandez M, Khan AA, Giannini C, et al. Colloidal ordered assemblies in a polymer shell-A novel type of magnetic nanobeads for theranostic applications. Chem Mater 2013;25:1055-62.
-
(2013)
Chem Mater
, vol.25
, pp. 1055-1062
-
-
Bigall, N.C.1
Wilhelm, C.2
Beoutis, M.-L.3
Garcia-Hernandez, M.4
Khan, A.A.5
Giannini, C.6
-
21
-
-
84865733423
-
Adjustable hyperthermia response of self-assembled ferromagnetic FeMgO core-shell nanoparticles by tuning dipole-dipole interactions
-
Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, et al. Adjustable hyperthermia response of self-assembled ferromagnetic FeMgO core-shell nanoparticles by tuning dipole-dipole interactions. Adv Funct Mater 2012;22: 3737-44.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 3737-3744
-
-
Martinez-Boubeta, C.1
Simeonidis, K.2
Serantes, D.3
Conde-Leborán, I.4
Kazakis, I.5
Stefanou, G.6
-
22
-
-
77958159320
-
Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles
-
Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, et al. Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 2010;108:073918.
-
(2010)
J Appl Phys
, vol.108
, pp. 073918
-
-
Serantes, D.1
Baldomir, D.2
Martinez-Boubeta, C.3
Simeonidis, K.4
Angelakeris, M.5
Natividad, E.6
-
23
-
-
84871550109
-
Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents
-
Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri JC, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012;6:10935-49.
-
(2012)
ACS Nano
, vol.6
, pp. 10935-10949
-
-
Lartigue, L.1
Hugounenq, P.2
Alloyeau, D.3
Clarke, S.P.4
Lévy, M.5
Bacri, J.C.6
-
24
-
-
81555210203
-
The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting
-
Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ. The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 2011;23:5243-9.
-
(2011)
Adv Mater
, vol.23
, pp. 5243-5249
-
-
Tartaj, P.1
Morales, M.P.2
Gonzalez-Carreño, T.3
Veintemillas-Verdaguer, S.4
Serna, C.J.5
-
26
-
-
67650108928
-
Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol)
-
Maity D, Kale SN, Kaul-Ghanekar R, Xue J-M, Ding J. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 2009;321:3093-8.
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 3093-3098
-
-
Maity, D.1
Kale, S.N.2
Kaul-Ghanekar, R.3
Xue, J.-M.4
Ding, J.5
-
27
-
-
38749092087
-
Magnetite nanoparticles: Electrochemical synthesis and characterization
-
Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim Acta 2008;53:3436-1.
-
(2008)
Electrochim Acta
, vol.53
, pp. 3436-3441
-
-
Cabrera, L.1
Gutierrez, S.2
Menendez, N.3
Morales, M.P.4
Herrasti, P.5
-
28
-
-
73949087550
-
Effect of surface properties on nanoparticlecell interactions
-
Verma A, Stellacci F. Effect of surface properties on nanoparticlecell interactions. Small 2010;6:12-21.
-
(2010)
Small
, vol.6
, pp. 12-21
-
-
Verma, A.1
Stellacci, F.2
-
29
-
-
34047264148
-
Magnetic nanoparticles as bimodal tools in magnetically induced labelling and magnetic heating of tumour cells: An in vitro study
-
Kettering M, Winter J, Zeisberger M, Bremer-Streck S, Oehring H, Bergemann C, et al. Magnetic nanoparticles as bimodal tools in magnetically induced labelling and magnetic heating of tumour cells: An in vitro study. Nanotechnology 2007;18:175101.
-
(2007)
Nanotechnology
, vol.18
, pp. 175101
-
-
Kettering, M.1
Winter, J.2
Zeisberger, M.3
Bremer-Streck, S.4
Oehring, H.5
Bergemann, C.6
-
30
-
-
77956443547
-
Remote control of ion channels and neurons through magnetic-field heating of nanoparticles
-
Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotech 2010;5:602-6.
-
(2010)
Nature Nanotech
, vol.5
, pp. 602-606
-
-
Huang, H.1
Delikanli, S.2
Zeng, H.3
Ferkey, D.M.4
Pralle, A.5
-
31
-
-
4043156991
-
Magnetic nanoparticle design for medical diagnosis and therapy
-
Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004;14: 2161-75.
-
(2004)
J Mater Chem
, vol.14
, pp. 2161-2175
-
-
Mornet, S.1
Vasseur, S.2
Grasset, F.3
Duguet, E.4
-
32
-
-
2742549921
-
Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels
-
Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Coll Int Sci 1980;74:227-43.
-
(1980)
J Coll Int Sci
, vol.74
, pp. 227-243
-
-
Sugimoto, T.1
Matijevic, E.2
-
33
-
-
70349558494
-
Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties
-
Gonzalez-Fernandez MA, Torres TE, Andrés-Vergés M, Costo R, de la Presa P, Serna CJ, et al. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J Solid State Chem 2009;182:2779-84.
-
(2009)
J Solid State Chem
, vol.182
, pp. 2779-2784
-
-
Gonzalez-Fernandez, M.A.1
Torres, T.E.2
Andrés-Vergés, M.3
Costo, R.4
De La Presa, P.5
Serna, C.J.6
-
34
-
-
0242367237
-
Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field
-
Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 2004;268:33-9.
-
(2004)
J Magn Magn Mater
, vol.268
, pp. 33-39
-
-
Ma, M.1
Wu, Y.2
Zhou, J.3
Sun, Y.4
Zhang, Y.5
Gu, N.6
-
35
-
-
33746238119
-
Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes
-
DOI 10.1002/anie.200503821
-
Jun Y, Choi J, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed Eng 2006;45:3414-39. (Pubitemid 44098950)
-
(2006)
Angewandte Chemie - International Edition
, vol.45
, Issue.21
, pp. 3414-3439
-
-
Jun, Y.-W.1
Choi, J.-S.2
Cheon, J.3
-
36
-
-
84872761914
-
Synthesis of inorganic nanoparticles
-
In: de la Fuente JM, Grazu V, eds Amsterdam: Elsevier
-
Salas G, Costo R, Morales MP. Synthesis of inorganic nanoparticles. In: de la Fuente JM, Grazu V, eds. Frontiers in Nanoscience, Vol 4. Nanobiotechnology: Inorganic Nanoparticles vs Organic Nanoparticles. Amsterdam: Elsevier, 2012, pp. 35-79.
-
(2012)
Frontiers in Nanoscience. Nanobiotechnology: Inorganic Nanoparticles Vs Organic Nanoparticles
, vol.4
, pp. 35-79
-
-
Salas, G.1
Costo, R.2
Morales, M.P.3
-
37
-
-
80053008855
-
Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route
-
Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, García-Hernández M, et al. Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 2011;23:4170-80.
-
(2011)
Chem Mater
, vol.23
, pp. 4170-4180
-
-
Levy, M.1
Quarta, A.2
Espinosa, A.3
Figuerola, A.4
Wilhelm, C.5
García-Hernández, M.6
-
38
-
-
10044223520
-
Ultralarge-scale syntheses of monodisperse nanocrystals
-
Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, et al. Ultralarge-scale syntheses of monodisperse nanocrystals. Nature Mater 2004;3:891-5.
-
(2004)
Nature Mater
, vol.3
, pp. 891-895
-
-
Park, J.1
An, K.2
Hwang, Y.3
Park, J.-G.4
Noh, H.-J.5
Kim, J.-Y.6
-
39
-
-
84870429733
-
Controlled synthesis of uniform magnetite nanocrystals with highquality properties for biomedical applications
-
Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP. Controlled synthesis of uniform magnetite nanocrystals with highquality properties for biomedical applications. J Mater Chem 2012; 22:21065-75.
-
(2012)
J Mater Chem
, vol.22
, pp. 21065-21075
-
-
Salas, G.1
Casado, C.2
Teran, F.J.3
Miranda, R.4
Serna, C.J.5
Morales, M.P.6
-
40
-
-
77955795729
-
Heating rate influence on the synthesis of iron oxide nanoparticles: The case of decanoic acid
-
Guardia P, Pérez-Juste J, Labarta A, Batlle X, Liz-Marzán LM. Heating rate influence on the synthesis of iron oxide nanoparticles: The case of decanoic acid. Chem Commun 2010;46:6108-10.
-
(2010)
Chem Commun
, vol.46
, pp. 6108-6110
-
-
Guardia, P.1
Pérez-Juste, J.2
Labarta, A.3
Batlle, X.4
Liz-Marzán, L.M.5
-
41
-
-
84860372444
-
Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment
-
Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 2012;6:3080-91.
-
(2012)
ACS Nano
, vol.6
, pp. 3080-3091
-
-
Guardia, P.1
Di Corato, R.2
Lartigue, L.3
Wilhelm, C.4
Espinosa, A.5
Garcia-Hernandez, M.6
-
42
-
-
33847723425
-
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
-
DOI 10.1021/ja067457e
-
Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 2007;129:2628-35. (Pubitemid 46371211)
-
(2007)
Journal of the American Chemical Society
, vol.129
, Issue.9
, pp. 2628-2635
-
-
Fortin, J.-P.1
Wilhelm, C.2
Servais, J.3
Menager, C.4
Bacri, J.-C.5
Gazeau, F.6
-
43
-
-
0019541337
-
Preparation of aqueous magnetic liquids in alkaline and acidic media
-
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 1981;17:1247-8. (Pubitemid 11497282)
-
(1981)
IEEE Transactions on Magnetics
, vol.MAG-17
, Issue.2
, pp. 1247-1248
-
-
Massart Rene1
-
45
-
-
84887896412
-
Method of preparing iron oxide nanoparticles coated with hydrophilic material, and magnetic resonance imaging contrast agent using the same
-
(Hanwha Chemical Corporation, Seoul, South Korea)
-
Hyeon T, Park J, Piao Y. Method of preparing iron oxide nanoparticles coated with hydrophilic material, and magnetic resonance imaging contrast agent using the same. WO2012108648, 2012 (Hanwha Chemical Corporation, Seoul, South Korea).
-
(2012)
WO2012108648
-
-
Hyeon, T.1
Park, J.2
Piao, Y.3
-
46
-
-
64749101605
-
Sizedependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia
-
Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Sizedependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 2009;321:1947-50.
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 1947-1950
-
-
Gonzales-Weimuller, M.1
Zeisberger, M.2
Krishnan, K.M.3
-
47
-
-
3142754336
-
Magnetic properties of metallic ferromagnetic nanoparticle composites
-
Ramprasad R, Zurcher P, Petras M, Miller M, Renaud P. Magnetic properties of metallic ferromagnetic nanoparticle composites. J Appl Phys 2004;96:519-29.
-
(2004)
J Appl Phys
, vol.96
, pp. 519-529
-
-
Ramprasad, R.1
Zurcher, P.2
Petras, M.3
Miller, M.4
Renaud, P.5
-
48
-
-
79955374240
-
Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems
-
Khandhar AP, Ferguson RM, Krishnan KM. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J App Phys 2011;109: 07B310.
-
(2011)
J App Phys
, vol.109
-
-
Khandhar, A.P.1
Ferguson, R.M.2
Krishnan, K.M.3
-
49
-
-
82555192613
-
Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study
-
Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, et al. Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study. Adv Funct Mater 2011;21:4573-81.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 4573-4581
-
-
Mehdaoui, B.1
Meffre, A.2
Carrey, J.3
Lachaize, S.4
Lacroix, L.-M.5
Gougeon, M.6
-
50
-
-
0012262743
-
Heating magnetic fluid with alternating magnetic field
-
Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370-74.
-
(2002)
J Magn Magn Mater
, vol.252
, pp. 370-374
-
-
Rosensweig, R.E.1
-
51
-
-
79960058505
-
Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties
-
Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 2011;133: 10459-72.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 10459-10472
-
-
Lartigue, L.1
Innocenti, C.2
Kalaivani, T.3
Awwad, A.4
Sanchez Duque, M.D.M.5
Guari, Y.6
-
52
-
-
54749116265
-
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
-
Hergt R, Dutz S, Röder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 2008;20:385214.
-
(2008)
J Phys: Condens Matter
, vol.20
, pp. 385214
-
-
Hergt, R.1
Dutz, S.2
Röder, M.3
-
53
-
-
84863838415
-
Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis
-
Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 2012;12: 3716-21.
-
(2012)
Nano Lett
, vol.12
, pp. 3716-3721
-
-
Noh, S.-H.1
Na, W.2
Jang, J.-T.3
Lee, J.-H.4
Lee, E.J.5
Moon, S.H.6
-
54
-
-
84883146836
-
Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications
-
Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 2013;3:1652.
-
(2013)
Sci Rep
, vol.3
, pp. 1652
-
-
Martinez-Boubeta, C.1
Simeonidis, K.2
Makridis, A.3
Angelakeris, M.4
Iglesias, O.5
Guardia, P.6
-
55
-
-
84864222715
-
Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia
-
Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 2012;116: 15702-12.
-
(2012)
J Phys Chem C
, vol.116
, pp. 15702-15712
-
-
Hugounenq, P.1
Levy, M.2
Alloyeau, D.3
Lartigue, L.4
Dubois, E.5
Cabuil, V.6
-
56
-
-
55349130049
-
The iron oxides
-
Weinheim, Germany: Wiley-VCH
-
Cornell RM, Schwertmann U. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses. 2nd Ed. Weinheim, Germany: Wiley-VCH, 2003, p. 123.
-
(2003)
Structure, Properties, Reactions, Occurrences and Uses. 2nd Ed
, pp. 123
-
-
Cornell, R.M.1
Schwertmann, U.2
-
57
-
-
79952775034
-
Magnetic iron oxide nanoparticles in 10 40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties
-
Santoyo Salazar J, Perez L, de Abril O, Truong Phuoc L, Ihiawakrim D, Vazquez M, et al. Magnetic iron oxide nanoparticles in 10 40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 2011;23: 1379-86.
-
(2011)
Chem Mater
, vol.23
, pp. 1379-1386
-
-
Santoyo Salazar, J.1
Perez, L.2
De Abril, O.3
Truong Phuoc, L.4
Ihiawakrim, D.5
Vazquez, M.6
-
58
-
-
79958851750
-
Microstructural and magnetic investigations of wüstite-spinel core-shell cubic-shaped nanoparticles
-
Pichon BP, Gerber O, Lefevre C, Florea I, Fleutot S, Baaziz W, et al. Microstructural and magnetic investigations of wüstite-spinel core-shell cubic-shaped nanoparticles. Chem Mater 2011;23: 2886-900.
-
(2011)
Chem Mater
, vol.23
, pp. 2886-2900
-
-
Pichon, B.P.1
Gerber, O.2
Lefevre, C.3
Florea, I.4
Fleutot, S.5
Baaziz, W.6
-
59
-
-
34547816125
-
Magnetic heating by cobalt ferrite nanoparticles
-
Veverka M, Veverka P, Kaman O, Lanc?ok A, Záve?ta K, Pollert E, et al. Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 2007;18:345704.
-
(2007)
Nanotechnology
, vol.18
, pp. 345704
-
-
Veverka, M.1
Veverka, P.2
Kaman, O.3
Lancok, A.4
Záveta, K.5
Pollert, E.6
-
60
-
-
84863504958
-
Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations
-
Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 2012;111:123902.
-
(2012)
J Appl Phys
, vol.111
, pp. 123902
-
-
Verde, E.L.1
Landi, G.T.2
Gomes, J.A.3
Sousa, M.H.4
Bakuzis, A.F.5
-
61
-
-
79960088905
-
Exchangecoupled magnetic nanoparticles for efficient heat induction
-
Lee J-H, Jang J, Choi J, Moon SH, Noh S, Kim J, et al. Exchangecoupled magnetic nanoparticles for efficient heat induction. Nat Nano 2011;6:418-22.
-
(2011)
Nat Nano
, vol.6
, pp. 418-422
-
-
Lee, J.-H.1
Jang, J.2
Choi, J.3
Moon, S.H.4
Noh, S.5
Kim, J.6
-
62
-
-
84875181700
-
Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia
-
de Sousa ME, Fernández van Raap MB, Rivas PC, Mendoza Zélis P, Girardin P, Pasquevich GA, et al. Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C 2013;117:5436-45.
-
(2013)
J Phys Chem C
, vol.117
, pp. 5436-5445
-
-
De Sousa, M.E.1
Fernández Van Raap, M.B.2
Rivas, P.C.3
Mendoza Zélis, P.4
Girardin, P.5
Pasquevich, G.A.6
-
63
-
-
84861073912
-
Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces
-
Salafranca J, Gazquez J, Pérez N, Labarta A, Pantelides ST, Pennycook SJ, et al. Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 2012;12: 2499-503.
-
(2012)
Nano Lett
, vol.12
, pp. 2499-2503
-
-
Salafranca, J.1
Gazquez, J.2
Pérez, N.3
Labarta, A.4
Pantelides, S.T.5
Pennycook, S.J.6
-
64
-
-
33751300032
-
Magnetostatic interactions in magnetic nanoparticle assemblies: Energy, time and length scales
-
DOI 10.1088/0022-3727/39/21/R02, PII S0022372706060621, R02
-
Majetich SA, Sachan M. Magnetostatic interactions in magnetic nanoparticle assemblies: Energy, time and length scales. J Phys D: Appl Phys 2006;39:R407-22. (Pubitemid 44794184)
-
(2006)
Journal of Physics D: Applied Physics
, vol.39
, Issue.21
-
-
Majetich, S.A.1
Sachan, M.2
-
65
-
-
84856508259
-
Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles
-
Haase C, Nowak U. Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 2012;85:045435.
-
(2012)
Phys Rev B
, vol.85
, pp. 045435
-
-
Haase, C.1
Nowak, U.2
-
66
-
-
70349102937
-
Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia
-
Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 2009;20:395103.
-
(2009)
Nanotechnology
, vol.20
, pp. 395103
-
-
Dennis, C.L.1
Jackson, A.J.2
Borchers, J.A.3
Hoopes, P.J.4
Strawbridge, R.5
Foreman, A.R.6
-
67
-
-
84877912842
-
Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results
-
Mehdaoui B, Tan RP, Meffre A, Carrey J, Lachaize S, Chaudret B, et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Phy Rev B 2013; 87:174419.
-
(2013)
Phy Rev B
, vol.87
, pp. 174419
-
-
Mehdaoui, B.1
Tan, R.P.2
Meffre, A.3
Carrey, J.4
Lachaize, S.5
Chaudret, B.6
-
68
-
-
48249092044
-
Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit
-
Andrés Vergés M, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, et al. Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit. J Phys D: Appl Phys 2008;41:134003.
-
(2008)
J Phys D: Appl Phys
, vol.41
, pp. 134003
-
-
Andrés Vergés, M.1
Costo, R.2
Roca, A.G.3
Marco, J.F.4
Goya, G.F.5
Serna, C.J.6
-
69
-
-
84870835215
-
Study of heating efficiency as a function of concentration, size, and applied field in g-Fe2O3 nanoparticles
-
de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, et al. Study of heating efficiency as a function of concentration, size, and applied field in g-Fe2O3 nanoparticles. J Phys Chem C. 2012;116:25602-10.
-
(2012)
J Phys Chem C.
, vol.116
, pp. 25602-25610
-
-
De La Presa, P.1
Luengo, Y.2
Multigner, M.3
Costo, R.4
Morales, M.P.5
Rivero, G.6
-
70
-
-
84856041516
-
The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles
-
Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 2011;6:383.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 383
-
-
Piñeiro-Redondo, Y.1
Bañobre-López, M.2
Pardiñas-Blanco, I.3
Goya, G.4
López-Quintela, M.A.5
Rivas, J.6
|