-
1
-
-
0002246837
-
-
M. Scheffler, G. Tröster, J. L. Contrras, J. Hartung, and M. Menard, Microelectron. J. 17/3, 11 (2000).
-
(2000)
Microelectron. J.
, vol.17
, Issue.3
, pp. 11
-
-
Scheffler, M.1
Tröster, G.2
Contrras, J.L.3
Hartung, J.4
Menard, M.5
-
2
-
-
0010470959
-
-
Munich, Germany, October
-
T. H. Lee, in Proceedings of GAAS 99 Conference, Munich, Germany, October, 1999, p. 8.
-
(1999)
Proceedings of GAAS 99 Conference
, pp. 8
-
-
Lee, T.H.1
-
3
-
-
3142725036
-
-
Geneva, Switzerland, May (unpublished)
-
Y. Koutsoyannopoulos, Y. Papananos, S. Bantas, and C. Alemanni, Proceedings of IEEE International Symposium on Circuits and Systems. Geneva, Switzerland, May 2000, p. 11-160 (unpublished).
-
(2000)
Proceedings of IEEE International Symposium on Circuits and Systems
, pp. 11-160
-
-
Koutsoyannopoulos, Y.1
Papananos, Y.2
Bantas, S.3
Alemanni, C.4
-
5
-
-
0001732032
-
-
T. J. Klemmer, K. A. Ellis, L. H. Chen, R. B. van Dover, and S. Jin, J. Appl. Phys. 87, 830 (2000).
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 830
-
-
Klemmer, T.J.1
Ellis, K.A.2
Chen, L.H.3
Van Dover, R.B.4
Jin, S.5
-
6
-
-
0000692255
-
-
S. Jin, W. Zhu, R. B. van Dover, T. H. Tiefel, V. Korenivski, and L. H. Chen, Appl. Phys. Lett. 70, 3161 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 3161
-
-
Jin, S.1
Zhu, W.2
Van Dover, R.B.3
Tiefel, T.H.4
Korenivski, V.5
Chen, L.H.6
-
8
-
-
0001438817
-
-
J. Huijbregtse, F. Roozeboom, J. Sietsma, J. Donkers, T. Kuiper, and E. van de Riet, J. Appl. Phys. 83, 1569 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 1569
-
-
Huijbregtse, J.1
Roozeboom, F.2
Sietsma, J.3
Donkers, J.4
Kuiper, T.5
Van De Riet, E.6
-
12
-
-
84999642629
-
-
U. Weidwald, M. Spasova, M. Farle, M. Hilgendorff, and M. Giersig, J. Vac. Sci. Technol. A 19, 1773 (2001).
-
(2001)
J. Vac. Sci. Technol. A
, vol.19
, pp. 1773
-
-
Weidwald, U.1
Spasova, M.2
Farle, M.3
Hilgendorff, M.4
Giersig, M.5
-
13
-
-
0000180005
-
-
M. Respaud, M. Goiran, J. M. Broto, F. H. Yang, T. Ould Ely, C. Amiens, and B. Chaudret, Phys. Rev. B 59, R3934 (1999).
-
(1999)
Phys. Rev. B
, vol.59
-
-
Respaud, M.1
Goiran, M.2
Broto, J.M.3
Yang, F.H.4
Ould Ely, T.5
Amiens, C.6
Chaudret, B.7
-
18
-
-
3142758847
-
-
note
-
This is strictly true only in materials that display uniaxial crystal anisotropy (such as Co). In the case of systems that display cubic crystal anisotropy (such as Fe), directions perpendicular to the easy axis could be other easy axes. Nevertheless, the permeability along any direction perpendicular to the saturation magnetization direction is still given by the formalism described here; hence, the nomenclature "hard" axis for directions orthogonal to the magnetization directions.
-
-
-
-
19
-
-
3142689928
-
-
note
-
In general, the permeability could be different along different hard axes. For instance, a thin film with the easy axis along the plane of the film displays the bulk permeability along a direction normal to both the easy axis and film normal, while a very low permeability is displayed along the film normal; in this case, "permeability" refers to the permeability along the former direction. In the cases of spheres and cylindrical rods with the easy axis along the rod axis (particles considered here), the permeabilities are the same along all the hard axes due to symmetry.
-
-
-
-
21
-
-
3142755857
-
-
D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, and P. G. Zerah, J. Appl. Phys. 74, (1993).
-
(1993)
J. Appl. Phys.
, vol.74
-
-
Rousselle, D.1
Berthault, A.2
Acher, O.3
Bouchaud, J.P.4
Zerah, P.G.5
-
26
-
-
0000017821
-
-
J. C. M. Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); 205, 237 (1906).
-
(1906)
Philos. Trans. R. Soc. London
, vol.205
, pp. 237
-
-
-
30
-
-
3142735275
-
-
See also Tables II and in for examples of demagnetizing factors. It should be noted that a zero demagnetizing shape factor along a particular direction implies that the demagnetizing field set up by an external field along that direction is zero
-
See also Tables II and in for examples of demagnetizing factors. It should be noted that a zero demagnetizing shape factor along a particular direction implies that the demagnetizing field set up by an external field along that direction is zero.
-
-
-
-
34
-
-
3142766314
-
-
note
-
p and A→ determined in the previous step; note that A→(c = 0)=N→.
-
-
-
-
35
-
-
0004161838
-
-
Cambridge University Press, Cambridge
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. F. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).
-
(1992)
Numerical Recipes
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.F.4
-
36
-
-
3142701645
-
-
note
-
Other considerations also impose constraints on the desired range of particle sizes; for instance, transition from single domain to multidomain particles generally imposes a more stringent constraint on the maximum size than is imposed by eddy current loss considerations, while the trasition from superparamagnetic to ferromagnetic phases imposes constraints on the minimum size (Ref. 16).
-
-
-
-
38
-
-
0004147488
-
Monte carlo simulation in statistical physics: An introduction
-
Springer, Berlin
-
K. Binder and Dieter W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, in Solid-State Sciences (Springer, Berlin, 1998).
-
(1998)
Solid-state Sciences
-
-
Binder, K.1
Heermann, D.W.2
|