-
1
-
-
84858684164
-
The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy
-
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41: 2885-911.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2885-2911
-
-
Doane, T.L.1
Burda, C.2
-
2
-
-
0038440614
-
Selective cell targeting with light-absorbing microparticles and nanoparticles
-
Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003; 84(6): 4023-32.
-
(2003)
Biophys J
, vol.84
, Issue.6
, pp. 4023-4032
-
-
Pitsillides, C.M.1
Joe, E.K.2
Wei, X.3
Anderson, R.R.4
Lin, C.P.5
-
3
-
-
0036707316
-
Biodegradable nanoparticles for drug delivery and targeting
-
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6: 319-27.
-
(2002)
Curr Opin Solid State Mater Sci
, vol.6
, pp. 319-327
-
-
Hans, M.L.1
Lowman, A.M.2
-
4
-
-
34547766051
-
PLA Nano-and microparticles for drug delivery: An overview of the methods of preparation
-
Lassalle V, Ferreira ML. PLA Nano-and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 2007; 7: 767-83.
-
(2007)
Macromol Biosci
, vol.7
, pp. 767-783
-
-
Lassalle, V.1
Ferreira, M.L.2
-
5
-
-
58249086971
-
PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery
-
Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009; 30: 1627-34.
-
(2009)
Biomaterials
, vol.30
, pp. 1627-1634
-
-
Chan, J.M.1
Zhang, L.2
Yuet, K.P.3
-
6
-
-
0037027882
-
Biodegradable poly([-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen
-
Chawla JS, Amiji MM. Biodegradable poly([-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 2002; 249: 127-38.
-
(2002)
Int J Pharm
, vol.249
, pp. 127-138
-
-
Chawla, J.S.1
Amiji, M.M.2
-
7
-
-
76849101594
-
Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting
-
Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 2010; 62: 478-90.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 478-490
-
-
Gupta, U.1
Jain, N.K.2
-
8
-
-
79955581524
-
Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility
-
He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 2011; 21: 5845-55.
-
(2011)
J Mater Chem
, vol.21
, pp. 5845-5855
-
-
He, Q.1
Shi, J.2
-
9
-
-
10444225515
-
Silica particles: A novel drugdelivery system
-
Barbe C, Bartlett J, Kong L, et al. Silica particles: a novel drugdelivery system. Adv Mater 2004; 16: 1959-66.
-
(2004)
Adv Mater
, vol.16
, pp. 1959-1966
-
-
Barbe, C.1
Bartlett, J.2
Kong, L.3
-
10
-
-
0036668656
-
Heating the patient: A promising approach?
-
van der Zee J. Heating the patient: a promising approach? Ann Oncol 2002; 13: 1173-1184.
-
(2002)
Ann Oncol
, vol.13
, pp. 1173-1184
-
-
van der Zee, J.1
-
11
-
-
0036339812
-
Hyperthermia in combined treatment of cancer
-
Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3: 487-97.
-
(2002)
Lancet Oncol
, vol.3
, pp. 487-497
-
-
Wust, P.1
Hildebrandt, B.2
Sreenivasa, G.3
-
13
-
-
70349898482
-
Nanoparticles for thermal cancer therapy
-
Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J Biomech Eng 2009; 131: (074001-1)-(074001-5).
-
(2009)
J Biomech Eng
, vol.131
, pp. 1-5
-
-
Day, E.S.1
Morton, J.G.2
West, J.L.3
-
14
-
-
0034879709
-
Status of hyperthermia in the treatment of advanced liver cancer
-
Moroz P, Jones SK, Gray BN. Status of hyperthermia in the treatment of advanced liver cancer. J Surg Oncol 2001; 77: 259-69.
-
(2001)
J Surg Oncol
, vol.77
, pp. 259-269
-
-
Moroz, P.1
Jones, S.K.2
Gray, B.N.3
-
15
-
-
0018396407
-
Potential for therapy of drugs and hyperthermia
-
Hahn GM. Potential for therapy of drugs and hyperthermia. Cancer Res 1979; 39: 2264-8.
-
(1979)
Cancer Res
, vol.39
, pp. 2264-2268
-
-
Hahn, G.M.1
-
17
-
-
42149128893
-
The role of hyperthermia in optimizing tumor response to regional therapy
-
Moyer HR, Delman KA. The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperthermia 2008; 24(3): 251-61.
-
(2008)
Int J Hyperthermia
, vol.24
, Issue.3
, pp. 251-261
-
-
Moyer, H.R.1
Delman, K.A.2
-
18
-
-
33644895407
-
Mechanism of cell death induction by nitroxide and hyperthermia
-
Zhao QL, Fujiwara Y, Kondo T. Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 2006; 40: 1131-43.
-
(2006)
Free Radic Biol Med
, vol.40
, pp. 1131-1143
-
-
Zhao, Q.L.1
Fujiwara, Y.2
Kondo, T.3
-
19
-
-
0036163396
-
Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors
-
Takahashi I, Emi Y, Hasuda S, Kakeji Y, Maehara Y, Sugimachi K. Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery 2002; 131: S78-S84.
-
(2002)
Surgery
, vol.131
-
-
Takahashi, I.1
Emi, Y.2
Hasuda, S.3
Kakeji, Y.4
Maehara, Y.5
Sugimachi, K.6
-
20
-
-
34347249892
-
Hyperthermia: A potent enhancer of radiotherapy
-
Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 2007; 19: 418-26.
-
(2007)
Clin Oncol
, vol.19
, pp. 418-426
-
-
Horsman, M.R.1
Overgaard, J.2
-
21
-
-
67649321438
-
Hyperthermia doseeffect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia
-
Franckena M, Fatehi D, de Bruijne M, et al. Hyperthermia doseeffect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 2009; 45: 1969-78.
-
(2009)
Eur J Cancer
, vol.45
, pp. 1969-1978
-
-
Franckena, M.1
Fatehi, D.2
de Bruijne, M.3
-
22
-
-
58549089522
-
Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes
-
Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat 2009; 113: 435-41.
-
(2009)
Breast Cancer Res Treat
, vol.113
, pp. 435-441
-
-
Kikumori, T.1
Kobayashi, T.2
Sawaki, M.3
Imai, T.4
-
23
-
-
63049133937
-
Current role and future perspectives of hyperthermia for prostate cancer treatment
-
Baronzio G, Gramaglia A, Fiorentini G. Current role and future perspectives of hyperthermia for prostate cancer treatment. In vivo 2009; 23: 143-6.
-
(2009)
In vivo
, vol.23
, pp. 143-146
-
-
Baronzio, G.1
Gramaglia, A.2
Fiorentini, G.3
-
24
-
-
0033524357
-
Hyperthermia for treatment of rectal cancer: Evaluation for induction of multidrug resistance gene (mdr1) expression
-
Stein U, Rau B, Wust P, Walther W, Schlag PM. Hyperthermia for treatment of rectal cancer: evaluation for induction of multidrug resistance gene (mdr1) expression. Int J Cancer 1999; 80: 5-12.
-
(1999)
Int J Cancer
, vol.80
, pp. 5-12
-
-
Stein, U.1
Rau, B.2
Wust, P.3
Walther, W.4
Schlag, P.M.5
-
25
-
-
0031935699
-
Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: Pharmacokinetics and cisplatin-DNA adduct forma tion in patients and ovarian cancer cell lines
-
van de Vaart PJM, van der Vange N, Zoetmulder FAN, et al. Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmacokinetics and cisplatin-DNA adduct forma tion in patients and ovarian cancer cell lines. Eur J Cancer 1998; 34: 148-54.
-
(1998)
Eur J Cancer
, vol.34
, pp. 148-154
-
-
van de Vaart, P.J.M.1
van der Vange, N.2
Zoetmulder, F.A.N.3
-
26
-
-
79959837515
-
A novel hyperthermia treatment for bone metastases using magnetic materials
-
Matsumine A, Takegami K, Asanuma K, et al. A novel hyperthermia treatment for bone metastases using magnetic materials. Int J Clin Oncol 2011; 16: 101-8.
-
(2011)
Int J Clin Oncol
, vol.16
, pp. 101-108
-
-
Matsumine, A.1
Takegami, K.2
Asanuma, K.3
-
27
-
-
0029018335
-
Hyperthermic therapy for HIV infection
-
Owens SD, Gasper PW. Hyperthermic therapy for HIV infection. Med Hypotheses 1995; 44: 235-42.
-
(1995)
Med Hypotheses
, vol.44
, pp. 235-242
-
-
Owens, S.D.1
Gasper, P.W.2
-
28
-
-
0024360231
-
Interstitial laser hyperthermia: A new approach to local destruction of tumours
-
Steger AC, Lees WR, Walmsley K, Bown SG. Interstitial laser hyperthermia: a new approach to local destruction of tumours. Br Med J 1989; 299: 362-5.
-
(1989)
Br Med J
, vol.299
, pp. 362-365
-
-
Steger, A.C.1
Lees, W.R.2
Walmsley, K.3
Bown, S.G.4
-
29
-
-
41549083324
-
Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells
-
Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnology 2008; 6: 1-9.
-
(2008)
J Nanobiotechnology
, vol.6
, pp. 1-9
-
-
Gannon, C.J.1
Patra, C.R.2
Bhattacharya, R.3
Mukherjee, P.4
Curley, S.A.5
-
30
-
-
76149096868
-
Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia
-
Chen X, Diederich CJ, Wootton JH, Pouliot J, Hsu IC. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia 2010; 26(1): 39-55.
-
(2010)
Int J Hyperthermia
, vol.26
, Issue.1
, pp. 39-55
-
-
Chen, X.1
Diederich, C.J.2
Wootton, J.H.3
Pouliot, J.4
Hsu, I.C.5
-
31
-
-
77955503189
-
Gold-nanoparticle-enhanced cancer photothermal therapy
-
Li JL, Gu M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J Sel Top Quantum Electron 2010; 16: 989-96.
-
(2010)
IEEE J Sel Top Quantum Electron
, vol.16
, pp. 989-996
-
-
Li, J.L.1
Gu, M.2
-
32
-
-
84858614944
-
Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions
-
Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 2012; 64: 190-9.
-
(2012)
Adv Drug Deliv Rev
, vol.64
, pp. 190-199
-
-
Alkilany, A.M.1
Thompson, L.B.2
Boulos, S.P.3
Sisco, P.N.4
Murphy, C.J.5
-
33
-
-
84858793545
-
Photothermal cancer therapy and imaging based on gold nanorods
-
Choi WL, Sahu A, Kim YH, Tae G. Photothermal cancer therapy and imaging based on gold nanorods. Ann Biomed Eng 2012; 40: 534-46.
-
(2012)
Ann Biomed Eng
, vol.40
, pp. 534-546
-
-
Choi, W.L.1
Sahu, A.2
Kim, Y.H.3
Tae, G.4
-
35
-
-
49349117341
-
Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice
-
Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008; 269: 57-66.
-
(2008)
Cancer Lett
, vol.269
, pp. 57-66
-
-
Dickerson, E.B.1
Dreaden, E.C.2
Huang, X.3
-
36
-
-
51149090145
-
Biological applications of gold nanoparticles
-
Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008; 37: 1896-908.
-
(2008)
Chem Soc Rev
, vol.37
, pp. 1896-1908
-
-
Sperling, R.A.1
Gil, P.R.2
Zhang, F.3
Zanella, M.4
Parak, W.J.5
-
37
-
-
25444502914
-
Gold nanorod bioconjugates
-
Liao H, Hafner JH. Gold nanorod bioconjugates. Chem Mater 2005; 17: 4636-41.
-
(2005)
Chem Mater
, vol.17
, pp. 4636-4641
-
-
Liao, H.1
Hafner, J.H.2
-
38
-
-
78650080865
-
Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo
-
Bardhan R, Chen W, Bartels M, et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 2010; 10: 4920-8.
-
(2010)
Nano Lett
, vol.10
, pp. 4920-4928
-
-
Bardhan, R.1
Chen, W.2
Bartels, M.3
-
39
-
-
33646257222
-
Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles
-
El-Sayed IH, Huang X, El-Sayed MA. Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006; 239: 129-35.
-
(2006)
Cancer Lett
, vol.239
, pp. 129-135
-
-
El-Sayed, I.H.1
Huang, X.2
El-Sayed, M.A.3
-
40
-
-
33244457595
-
Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
-
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128: 2115-20.
-
(2006)
J Am Chem Soc
, vol.128
, pp. 2115-2120
-
-
Huang, X.1
El-Sayed, I.H.2
Qian, W.3
El-Sayed, M.A.4
-
41
-
-
18144410597
-
Immunotargeted nanoshells for integrated cancer imaging and therapy
-
Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005; 5: 709-11.
-
(2005)
Nano Lett
, vol.5
, pp. 709-711
-
-
Loo, C.1
Lowery, A.2
Halas, N.3
West, J.4
Drezek, R.5
-
42
-
-
26844534555
-
Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy
-
Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 2005; 37: 219-26.
-
(2005)
Lasers Surg Med
, vol.37
, pp. 219-226
-
-
Zharov, V.P.1
Galitovskaya, E.N.2
Johnson, C.3
Kelly, T.4
-
43
-
-
23044465401
-
Microbubblesoverlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters
-
Zharov VP, Letfullin RR, Galitovskaya EN. Microbubblesoverlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D Appl Phys 2005; 38: 2571-81.
-
(2005)
J Phys D Appl Phys
, vol.38
, pp. 2571-2581
-
-
Zharov, V.P.1
Letfullin, R.R.2
Galitovskaya, E.N.3
-
44
-
-
84863821070
-
Photothermal effects of folate-conjugated Au nanorods on HepG2 cells
-
Jin H, Yang P, Cai J, Wang J, Liu M. Photothermal effects of folate-conjugated Au nanorods on HepG2 cells. Appl Microbiol Biotechnol 2012; 94: 1199-208.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, pp. 1199-1208
-
-
Jin, H.1
Yang, P.2
Cai, J.3
Wang, J.4
Liu, M.5
-
45
-
-
84859112239
-
Nanomaterials for targeted detection and photothermal killing of bacteria
-
Ray PC, Khan SA, Singh AK, Senapati D, Fan Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 2012; 41: 3193-209.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 3193-3209
-
-
Ray, P.C.1
Khan, S.A.2
Singh, A.K.3
Senapati, D.4
Fan, Z.5
-
46
-
-
33646204157
-
Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles
-
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006; 90: 619-27.
-
(2006)
Biophys J
, vol.90
, pp. 619-627
-
-
Zharov, V.P.1
Mercer, K.E.2
Galitovskaya, E.N.3
Smeltzer, M.S.4
-
47
-
-
80455163241
-
Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104
-
Khan SA, Singh AK, Senapati D, Fan Z, Ray PC. Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104. J Mater Chem 2011; 21: 17705-9.
-
(2011)
J Mater Chem
, vol.21
, pp. 17705-17709
-
-
Khan, S.A.1
Singh, A.K.2
Senapati, D.3
Fan, Z.4
Ray, P.C.5
-
48
-
-
38049126047
-
Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria
-
Huang WC, Tsai PJ, Chen YC. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine 2007; 2(6): 777-87.
-
(2007)
Nanomedicine
, vol.2
, Issue.6
, pp. 777-787
-
-
Huang, W.C.1
Tsai, P.J.2
Chen, Y.C.3
-
49
-
-
38749147668
-
Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods
-
Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 2008; 8: 302-6.
-
(2008)
Nano Lett
, vol.8
, pp. 302-306
-
-
Norman, R.S.1
Stone, J.W.2
Gole, A.3
Murphy, C.J.4
Sabo-Attwood, T.L.5
-
50
-
-
84857704148
-
Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells
-
Fan Z, Shelton M, Singh AK, Senapati D, Khan SA, Ray PC. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 2012; 6: 1065-73.
-
(2012)
ACS Nano
, vol.6
, pp. 1065-1073
-
-
Fan, Z.1
Shelton, M.2
Singh, A.K.3
Senapati, D.4
Khan, S.A.5
Ray, P.C.6
-
51
-
-
78349304285
-
Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
-
Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011; 32: 144-51.
-
(2011)
Biomaterials
, vol.32
, pp. 144-151
-
-
Liu, X.1
Tao, H.2
Yang, K.3
Zhang, S.4
Lee, S.T.5
Liu, Z.6
-
52
-
-
58149091042
-
Nanoshell-enabled photothermal cancer therapy: Impending clinical impact
-
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41: 1842-51.
-
(2008)
Acc Chem Res
, vol.41
, pp. 1842-1851
-
-
Lal, S.1
Clare, S.E.2
Halas, N.J.3
-
53
-
-
79959298397
-
Cancer theranostics: The rise of the targeted magnetic nanoparticles
-
Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of the targeted magnetic nanoparticles. Trends Biotechnol 2011; 29: 323-32.
-
(2011)
Trends Biotechnol
, vol.29
, pp. 323-332
-
-
Cole, A.J.1
Yang, V.C.2
David, A.E.3
-
54
-
-
80054821668
-
Theranostics: Combining imaging and therapy
-
Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem 2011; 22: 1879-903.
-
(2011)
Bioconjug Chem
, vol.22
, pp. 1879-1903
-
-
Kelkar, S.S.1
Reineke, T.M.2
-
55
-
-
80155214241
-
4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria
-
4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Nanomedicine 2011; 6(8): 1353-63.
-
(2011)
Nanomedicine
, vol.6
, Issue.8
, pp. 1353-1363
-
-
Yu, T.J.1
Li, P.H.2
Tseng, T.W.3
Chen, Y.C.4
-
56
-
-
73249145012
-
In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
-
Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009; 3: 3707-13.
-
(2009)
ACS Nano
, vol.3
, pp. 3707-3713
-
-
Moon, H.K.1
Lee, S.H.2
Choi, H.C.3
-
57
-
-
0000160454
-
Experimental relations of gold (and other metals) to light
-
Faraday M. Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 1857; 147: 145-81.
-
(1857)
Philos Trans R Soc London
, vol.147
, pp. 145-181
-
-
Faraday, M.1
-
58
-
-
33746096072
-
A study of the nucleation and growth processes in the synthesis of colloidal gold
-
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951; 11: 55-75.
-
(1951)
Discuss Faraday Soc
, vol.11
, pp. 55-75
-
-
Turkevich, J.1
Stevenson, P.C.2
Hillier, J.3
-
59
-
-
37049074842
-
Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system
-
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994; 7: 801-2.
-
(1994)
J Chem Soc Chem Commun
, vol.7
, pp. 801-802
-
-
Brust, M.1
Walker, M.2
Bethell, D.3
Schiffrin, D.J.4
Whyman, R.5
-
60
-
-
33646421669
-
Covalently linked Au nanoparticles to a viral vector: Potential for combined photothermal and gene cancer therapy
-
Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6: 587-91.
-
(2006)
Nano Lett
, vol.6
, pp. 587-591
-
-
Everts, M.1
Saini, V.2
Leddon, J.L.3
-
62
-
-
2442692534
-
Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles
-
O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209: 171-6.
-
(2004)
Cancer Lett
, vol.209
, pp. 171-176
-
-
O'Neal, D.P.1
Hirsch, L.R.2
Halas, N.J.3
Payne, J.D.4
West, J.L.5
-
63
-
-
33749538620
-
Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters
-
Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 2006; 17: 5167-79.
-
(2006)
Nanotechnology
, vol.17
, pp. 5167-5179
-
-
Khlebtsov, B.1
Zharov, V.2
Melnikov, A.3
Tuchin, V.4
Khlebtsov, N.5
-
64
-
-
79952116422
-
Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer
-
Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomedicine 2010; 5: 445-54.
-
(2010)
Int J Nanomedicine
, vol.5
, pp. 445-454
-
-
Day, E.S.1
Bickford, L.R.2
Slater, J.H.3
Riggall, N.S.4
Drezek, R.A.5
West, J.L.6
-
65
-
-
0345686712
-
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
-
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100: 13549-54.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 13549-13554
-
-
Hirsch, L.R.1
Stafford, R.J.2
Bankson, J.A.3
-
66
-
-
84867884045
-
Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications
-
853416
-
Zhang G, Sun X, Jasinski J, Patel D, Gobin AM. Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications. J Nanomater 2012; 853416: 1-9.
-
(2012)
J Nanomater
, pp. 1-9
-
-
Zhang, G.1
Sun, X.2
Jasinski, J.3
Patel, D.4
Gobin, A.M.5
-
67
-
-
34547600314
-
Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy
-
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007; 7: 1929-34.
-
(2007)
Nano Lett
, vol.7
, pp. 1929-1934
-
-
Gobin, A.M.1
Lee, M.H.2
Halas, N.J.3
James, W.D.4
Drezek, R.A.5
West, J.L.6
-
68
-
-
55749107832
-
Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia
-
Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 2008; 20: 3832-8.
-
(2008)
Adv Mater
, vol.20
, pp. 3832-3838
-
-
Hauck, T.S.1
Jennings, T.L.2
Yatsenko, T.3
Kumaradas, J.C.4
Chan, W.C.W.5
-
69
-
-
78651344780
-
A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies
-
Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 2011; 7: 169-83.
-
(2011)
Small
, vol.7
, pp. 169-183
-
-
Kennedy, L.C.1
Bickford, L.R.2
Lewinski, N.A.3
-
70
-
-
84862540965
-
Plasmonic nanopowders for photothermal therapy of tumors
-
Khlebtsov BN, Panfilova EV, Terentyuk GS, Maksimova IL, Ivanov AV, Khlebtsov NG. Plasmonic nanopowders for photothermal therapy of tumors. Langmuir 2012; 28: 8994-9002.
-
(2012)
Langmuir
, vol.28
, pp. 8994-9002
-
-
Khlebtsov, B.N.1
Panfilova, E.V.2
Terentyuk, G.S.3
Maksimova, I.L.4
Ivanov, A.V.5
Khlebtsov, N.G.6
-
71
-
-
0035902370
-
Wet chemical synthesis of high aspect ratio cylindrical gold nanorods
-
Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 2001; 105: 4065-7.
-
(2001)
J Phys Chem B
, vol.105
, pp. 4065-4067
-
-
Jana, N.R.1
Gearheart, L.2
Murphy, C.J.3
-
72
-
-
0000547095
-
Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant
-
Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 1999; 103: 3073-7.
-
(1999)
J Phys Chem B
, vol.103
, pp. 3073-3077
-
-
Link, S.1
Mohamed, M.B.2
El-Sayed, M.A.3
-
74
-
-
34547108108
-
Folate receptor overexpression is associated with poor outcome in breast cancer
-
Hartmann LC, Keeney GL, Lingle WL, et al. Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 2007; 121: 938-42.
-
(2007)
Int J Cancer
, vol.121
, pp. 938-942
-
-
Hartmann, L.C.1
Keeney, G.L.2
Lingle, W.L.3
-
75
-
-
0030910859
-
Overexpression of folate binding protein in ovarian cancers
-
Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997; 74: 193-8.
-
(1997)
Int J Cancer
, vol.74
, pp. 193-198
-
-
Toffoli, G.1
Cernigoi, C.2
Russo, A.3
Gallo, A.4
Bagnoli, M.5
Boiocchi, M.6
-
76
-
-
80052061132
-
A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model
-
Wang X, Li J, Wang Y, et al. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 2011; 5: 6184-94.
-
(2011)
ACS Nano
, vol.5
, pp. 6184-6194
-
-
Wang, X.1
Li, J.2
Wang, Y.3
-
77
-
-
63449129301
-
4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells
-
4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed 2009; 48: 2759-63.
-
(2009)
Angew Chem Int Ed
, vol.48
, pp. 2759-2763
-
-
Wang, C.1
Chen, J.2
Talavage, T.3
Irudayaraj, J.4
-
78
-
-
79953212625
-
Bifunctional gold nanorod-loaded polymeric microcapsules for both contrast-enhanced ultrasound imaging and photothermal therapy
-
Ke H, Wang J, Dai Z, et al. Bifunctional gold nanorod-loaded polymeric microcapsules for both contrast-enhanced ultrasound imaging and photothermal therapy. J Mater Chem 2011; 21: 5561-4.
-
(2011)
J Mater Chem
, vol.21
, pp. 5561-5564
-
-
Ke, H.1
Wang, J.2
Dai, Z.3
-
81
-
-
34547131818
-
Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells
-
Larson TA, Bankson J, Aaron J, Sokolov K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007; 18: 325101 (8pp).
-
(2007)
Nanotechnology
, vol.18
-
-
Larson, T.A.1
Bankson, J.2
Aaron, J.3
Sokolov, K.4
-
82
-
-
58149466847
-
4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria
-
4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small 2009; 5: 51-6.
-
(2009)
Small
, vol.5
, pp. 51-56
-
-
Huang, W.C.1
Tsai, P.J.2
Chen, Y.C.3
-
83
-
-
84855681791
-
Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells
-
Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed 2012; 51: 636-41.
-
(2012)
Angew Chem Int Ed
, vol.51
, pp. 636-641
-
-
Vigderman, L.1
Manna, P.2
Zubarev, E.R.3
-
84
-
-
84862323547
-
In vivo tumor targeting of gold nanoparticles: Effect of particle type and dosing strategy
-
Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomedicine 2012; 7: 1251-8.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 1251-1258
-
-
Puvanakrishnan, P.1
Park, J.2
Chatterjee, D.3
Krishnan, S.4
Tunnell, J.W.5
-
85
-
-
79960231793
-
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery
-
Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 2011; 63: 789-808.
-
(2011)
Adv Drug Deliv Rev
, vol.63
, pp. 789-808
-
-
Kumar, C.S.S.R.1
Mohammad, F.2
-
86
-
-
36048943923
-
Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors
-
Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008; 29: 487-96.
-
(2008)
Biomaterials
, vol.29
, pp. 487-496
-
-
Chertok, B.1
Moffat, B.A.2
David, A.E.3
-
87
-
-
48349102690
-
Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging
-
Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008; 29: 4012-21.
-
(2008)
Biomaterials
, vol.29
, pp. 4012-4021
-
-
Jain, T.K.1
Richey, J.2
Strand, M.3
Leslie-Pelecky, D.L.4
Flask, C.A.5
Labhasetwar, V.6
-
89
-
-
47249140441
-
Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
-
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108: 2064-110.
-
(2008)
Chem Rev
, vol.108
, pp. 2064-2110
-
-
Laurent, S.1
Forge, D.2
Port, M.3
-
90
-
-
11044222650
-
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
-
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021.
-
(2005)
Biomaterials
, vol.26
, pp. 3995-4021
-
-
Gupta, A.K.1
Gupta, M.2
-
91
-
-
84860806328
-
Innovative ligandassisted synthesis of NIR-activated iron oxide for cancer theranostics
-
Liao MY, Lai PS, Yu HP, Lin HP, Huang CC. Innovative ligandassisted synthesis of NIR-activated iron oxide for cancer theranostics. Chem Commun 2012; 48: 5319-21.
-
(2012)
Chem Commun
, vol.48
, pp. 5319-5321
-
-
Liao, M.Y.1
Lai, P.S.2
Yu, H.P.3
Lin, H.P.4
Huang, C.C.5
-
92
-
-
79955138401
-
Photothermal therapy of cancer cells using magnetic carbon nanoparticles
-
San Francisco, CA, Jan. 24-26
-
Vardarajan V, Gu L, Kanneganti, Mohanty SK, Koymen AR. Photothermal therapy of cancer cells using magnetic carbon nanoparticles. Proceedings of the SPIE Conference on Optical Interactions with Tissue and Cells XXII, San Francisco, CA, Jan. 24-26, 2011; pp. 78970Z-1-78970Z-7.
-
(2011)
Proceedings of the SPIE Conference on Optical Interactions with Tissue and Cells XXII
, pp. 1-7
-
-
Vardarajan, V.1
Gu, L.2
Kanneganti Mohanty, S.K.3
Koymen, A.R.4
-
93
-
-
0019541337
-
Preparation of aqueous magnetic liquids in alkaline and acidic media
-
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 1981; 17: 1247-8.
-
(1981)
IEEE Trans Magn
, vol.17
, pp. 1247-1248
-
-
Massart, R.1
-
94
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-8.
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
95
-
-
0001421410
-
Applications of carbon nanotubes
-
Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Topics Appl Phys 2001; 80: 391-425.
-
(2001)
Topics Appl Phys
, vol.80
, pp. 391-425
-
-
Ajayan, P.M.1
Zhou, O.Z.2
-
96
-
-
34748900551
-
Carbon nanotubes for biological and biomedical applications
-
Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 2007; 18: 412001 (12pp).
-
(2007)
Nanotechnology
, vol.18
-
-
Yang, W.1
Thordarson, P.2
Gooding, J.J.3
Ringer, S.P.4
Braet, F.5
-
98
-
-
23844531202
-
Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction
-
Kam NWS, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005; 102: 11600-5.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 11600-11605
-
-
Kam, N.W.S.1
O'Connell, M.2
Wisdom, J.A.3
Dai, H.4
-
99
-
-
69149092835
-
Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation
-
Burke A, Ding X, Singh R, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 2009; 106: 12897-902.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 12897-12902
-
-
Burke, A.1
Ding, X.2
Singh, R.3
-
100
-
-
70349607094
-
Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes
-
Ghosh S, Dutta S, Gomes E, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009; 3: 2667-73.
-
(2009)
ACS Nano
, vol.3
, pp. 2667-2673
-
-
Ghosh, S.1
Dutta, S.2
Gomes, E.3
-
101
-
-
72449201252
-
Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies
-
Marches R, Chakravarty P, Musselman IH, et al. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int J Cancer 2009; 125: 2970-7.
-
(2009)
Int J Cancer
, vol.125
, pp. 2970-2977
-
-
Marches, R.1
Chakravarty, P.2
Musselman, I.H.3
-
102
-
-
78751702579
-
Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody
-
Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 2011; 7: 69-79.
-
(2011)
Nanomedicine
, vol.7
, pp. 69-79
-
-
Wang, C.H.1
Chiou, S.H.2
Chou, C.P.3
Chen, Y.C.4
Huang, Y.J.5
Peng, C.A.6
-
103
-
-
78349304285
-
Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
-
Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011; 32: 144-51.
-
(2011)
Biomaterials
, vol.32
, pp. 144-151
-
-
Liu, X.1
Tao, H.2
Yang, K.3
Zhang, S.4
Lee, S.T.5
Liu, Z.6
-
104
-
-
78349284397
-
Single-Wall Carbon Nanotubes Assisted Photothermal Cancer Therapy: Animal Study With a Murine Model of Squamous Cell Carcinoma
-
Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H. Single-Wall Carbon Nanotubes Assisted Photothermal Cancer Therapy: Animal Study With a Murine Model of Squamous Cell Carcinoma. Lasers Surg Med 2010; 42: 638-48.
-
(2010)
Lasers Surg Med
, vol.42
, pp. 638-648
-
-
Huang, N.1
Wang, H.2
Zhao, J.3
Lui, H.4
Korbelik, M.5
Zeng, H.6
-
105
-
-
84862815513
-
Antitumor immunologically modified carbon nanotubes for photothermal therapy
-
Zhou F, Wu S, Song S, Chen WR, Resasco DE, Xing D. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials 2012; 33: 3235-42.
-
(2012)
Biomaterials
, vol.33
, pp. 3235-3242
-
-
Zhou, F.1
Wu, S.2
Song, S.3
Chen, W.R.4
Resasco, D.E.5
Xing, D.6
-
106
-
-
84862804254
-
The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy
-
Burke AR, Singh RN, Carroll DL, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33: 2961-70.
-
(2012)
Biomaterials
, vol.33
, pp. 2961-2970
-
-
Burke, A.R.1
Singh, R.N.2
Carroll, D.L.3
-
107
-
-
70350633523
-
Glycated chitosan as a new non-toxic immunological stimulant
-
Song S, Zhou F, Nordquist RE, Carubelli R, Liu H, Chen WR. Glycated chitosan as a new non-toxic immunological stimulant. Immunopharmacol Immunotoxicol 2009; 31(2): 202-8.
-
(2009)
Immunopharmacol Immunotoxicol
, vol.31
, Issue.2
, pp. 202-208
-
-
Song, S.1
Zhou, F.2
Nordquist, R.E.3
Carubelli, R.4
Liu, H.5
Chen, W.R.6
-
108
-
-
78149312644
-
Copper sulfide nanoparticles for photothermal ablation of tumor cells
-
Li Y, Lu W, Huang Q, Huang M, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010; 5(8): 1161-71.
-
(2010)
Nanomedicine
, vol.5
, Issue.8
, pp. 1161-1171
-
-
Li, Y.1
Lu, W.2
Huang, Q.3
Huang, M.4
Li, C.5
Chen, W.6
-
109
-
-
79958810593
-
Copper selenide nanocrystals for photothermal therapy
-
Hessel CM, Pattani VP, Rasch M, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett 2011; 11: 2560-6.
-
(2011)
Nano Lett
, vol.11
, pp. 2560-2566
-
-
Hessel, C.M.1
Pattani, V.P.2
Rasch, M.3
-
111
-
-
72049089817
-
Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer
-
Yang J, Lee J, Kang J, et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater 2009; 21: 4339-42.
-
(2009)
Adv Mater
, vol.21
, pp. 4339-4342
-
-
Yang, J.1
Lee, J.2
Kang, J.3
-
112
-
-
77951849715
-
Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo
-
Cheng FY, Su CH, Wu PC, Yeh CS. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem Commun 2010; 46: 3167-9.
-
(2010)
Chem Commun
, vol.46
, pp. 3167-3169
-
-
Cheng, F.Y.1
Su, C.H.2
Wu, P.C.3
Yeh, C.S.4
-
113
-
-
84858792754
-
Tunable nanostructures as photothermal theranostic agents
-
Young JK, Figueroa ER, Drezek RA. Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng 2012; 40: 438-59.
-
(2012)
Ann Biomed Eng
, vol.40
, pp. 438-459
-
-
Young, J.K.1
Figueroa, E.R.2
Drezek, R.A.3
-
114
-
-
0842287342
-
Probing the cytotoxicity of semiconductor quantum dots
-
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4: 11-8.
-
(2004)
Nano Lett
, vol.4
, pp. 11-18
-
-
Derfus, A.M.1
Chan, W.C.W.2
Bhatia, S.N.3
-
115
-
-
77951473694
-
-
Nanospectra Biosciences, Inc., Pilot study of AuroLase™ therapy in refractory and/or recurrent tumors of the head and neck, gov: A service of the U.S. National Institutes of Health [cited Dec 28]. Available from
-
Nanospectra Biosciences, Inc., Pilot study of AuroLase™ therapy in refractory and/or recurrent tumors of the head and neck. ClinicalTrials. gov: A service of the U. S. National Institutes of Health [cited 2012 Dec 28]. Available from: http://clinicaltrials. gov/ct2/show/study/NCT00848042?term=auros hells.
-
(2012)
ClinicalTrials
-
-
|